

Composants pneumatiques

Actionneurs, distribution, sécurité, raccords, tubes et tuyaux, réservoirs et réseaux d'air.

CATALOGUE COMPOSANTS PNEUMATIQUES

www.socah-hydraulique.fr

Un groupe familial de PME complémentaires expertes dans les domaines de l'hydraulique.

Notre savoir-faire et nos expériences individuelles nous permettent de proposer une offre globale de qualité et de couvrir tous les métiers et marchés de l'hydraulique en France et à l'étranger.

Les chiffres clés

Nos activités

Nos moyens

permanent

Livraison rapide

Nos activités

production

LE NÉGOCE

Nos relations directes avec les usines nous permettent d'importer, au meilleur rapport qualité/prix, des composants que commercialisons aux professionnels du secteur.

LIVRAISON RAPIDE

Départs du lundi au jeudi jusqu'à 17 h, le vendredi jusqu'à 16 h. Livraison sous 24/48 heures.

LA FABRICATION

Conception et réalisation de centrales systèmes hydrauliques et pneumatiques. Fabrication de:

- Réservoirs standards et suivant plan.
- Vérins simple et double effet standards et sur-mesure, hydrauliques et pneumatiques.
- Tubes cintrés et flexibles équipés.
- Flexibles, tuyaux et tubes PTFE et Inox.
- Systèmes de filtration et de dépollution.
- Equipements pour la formation en hydraulique.

ÉOUIPES CONSEIL & TECHNIQUE

Des équipes de commerciaux à votre écoute pour vous conseiller dans le choix de vos composants.

Nos moyens

STOCK PERMANENT

Un stock permanent de plus de 5.000.000€ de composants les plus couramment utilisés dont 5.000 moteurs gerotor.

Nos métiers, nos marques

NOTRE GAMME DE PRODUITS

Actionneurs

Distribution

Robinetterie et vannes

Raccords

Tubes et tuyaux

Réservoirs et réseaux d'air

137

7 ACTIONNEURS

Vérins CNOMO	8
Chapes Vérins CNOMO	
Vérins pneumatiques ISO 15552 Série NWT	15
Vérins pneumatiques compacts ISO 21287 ou UNITOP Série NSK	19
Vérins pneumatiques à tirants ISO 15552 Série XJC	23
Chapes verins Séries NWT - NSK - XJC	
Vérins pneumatiques cartouche Série CZ	42
Vérins pneumatiques ISO 6432 Séries ACM-DVM-DRM-ACMT-DVMT	43
Accessoires	48
Vérins anti corrosion Séries DSM-DSA-XPN-XJS-XJSS	49
Vérins pneumatiques course brève Série SH	
Vérins pneumatiques multi-tiges antirotation 2 tiges Séries AR2 - AR3 - AW2 - AW3 - AW4	4 61
Vérins pneumatiques multi-tiges antirotation 3 tiges Séries AW6 - AW8	64
Vérins pneumatiques multi-tiges antirotation Séries AW1 - AW5 - AW7	
Vérins pneumatiques compacts Série HNG	66
Vérins cylindre plat Série NCV	69
Vérin rotatif Série CRW	
Unités de translation Séries RLF- RLFR - RLFG - RLFH - TM	
Chapes autres vérins	79
Unités de guidage Séries GU GH	
Vérins pneumatiques avec bloqueur de tige intégré Série RW	90
Bloqueur de tige Série DC	
Vérins stoppeurs Série ST	
Vérins électriques Série ESN	
Actionneurs rotatifs avec vannes à billes simple effet	
Actionneurs rotatifs avec vannes à billes double effet	
Vannes à bille laiton avec actionneurs simple effet	
Vannes à bille laiton avec actionneurs double effet	
Vannes à bille acier inoxydable avec actionneurs à simple effet	107
Vannes à bille acier inoxydable avec actionneurs à double effet	
Boîtier fin de course	
Réducteurs débrayables pour actionneur rotatif avec vannes à billes	
Vérins rotatifs à palette double effet	
Accessoires	
Actionneurs rotatifs Séries ARC- ARP	
Pinces pneumatiques Séries MH - MHM - MGP - MGA	
Pinces Parallèles à 3 doigts double effet - alésages de 25 à 63 mm	
Accessoires vérins	135
DICTDIDITION	
DISTRIBUTION	
D IANA AND AND AND AND AND AND AND AND AND	
Distributeurs et électrodistributeurs Séries E et NAMUR	
Index - distributeurs et électrodistributeurs Série E	
Index - distributeurs et électrodistributeurs Série NAMUR	
Distributeurs et électrodistributeurs mini Série K	
Index - distributeurs et électrodistributeurs Série K	
Module de connexion MPV	160
Distributeurs et électrodistributeurs ISO 5599	
Distributeurs et électrodistributeurs mini ISO 18	
Bloc distributeurs pour modèles ISO 5599 et ISO 18	167

 Distributeurs à commande manuelle
 168

 Microvalves
 169

 Distributeurs à levier
 170

 Distributeurs avec bouton
 172

 Distributeurs commande à pédale
 173

 Distributeurs à commande mécanique
 174

 Microvalves
 175

 Distributeurs avec poussoir mécanique
 176

 Distributeurs avec levier à galet
 178

 Distributeurs avec levier à galet latéral
 179

Distributeurs série A1 1/8" 5/3	180
Oscillateur à commande pneumatique	
Flip-flop	
Connecteur pour électrovanne Type A - Type B - Type C	
Électrovanne à commande différentielle pour eau et vapeur	
4hf Netlogic	
Radios commande	
Radio commande Modèle ECO	
Radio commande Modèle SOC	
Radio commande Modèle RXFM 16	
Radio commande Modèle EUR	
SÉCURITÉ	
Vannes à commande pneumatique Type HF Inox	214
Robinetterie et vannes industrielles	
Pressostat électronique réglable Séries KLV5 - FL4	
Pressostat réglable Séries K4 - F4	
Soupapes de sécurité	
Soupapes de securite Temporisateur pneumatique	
Temporisateur pneumatique	
Vannes à levier basculant Interrupteur pneumatique en ligne	
Manomètre en ligne	
Fin de course pneumatique	
i iii de codise piledilialique	229
RACCORDS	
Raccords instantanés technopolymères Série QF	236
Raccords instantanés métal Série QB	
Mini raccords instantanés Série QM	
Raccords de connexion inox Série QX	
Raccords de connexion Série QT	
Raccords divers RA 11 à RA 45	
Collecteurs	
Raccords à coiffe MC 11 à MC 36	
Coupleurs de sécurité GU42-10 à GU43-22	
Coupleurs rapides INOX Séries GXA (DN6 à DN25)	
Coupleurs rapides INOX Série GXF (DN6 à DN30)	
Coupleurs rotatifs en ligne et à 90° Série GGLX – GGAX (DN 6 à DN 50)	282
Limiteurs de débit Série QR	
Raccords à fonction Série QV	
Raccord à fonction	
Connecteurs Multi-Coupleurs	
Connecteurs Multi-Coupleurs	
Fin de course pneumatique automatique	
Raccords silencieux	
TUBES ET TUYAUX	
TUBES ET TUYAUX	
	295
TUBES ET TUYAUX Tube Polyamide PA 11 PHL RILSAN® - PA 12 PHL MB-Longlife™	295
Tube Polyamide PA 11 PHL RILSAN® - PA 12 PHL MB-Longlife™ Tube Polyuréthane PU 98 MB-Longlife™	295 299 302
Tube Polyamide PA 11 PHL RILSAN® - PA 12 PHL MB-Longlife™ Tube Polyuréthane PU 98 MB-Longlife™ Multitubes Polyéthylène Série MTP	295 299 302 303
Tube Polyamide PA 11 PHL RILSAN® - PA 12 PHL MB-Longlife™ Tube Polyuréthane PU 98 MB-Longlife™ Multitubes Polyéthylène Série MTP Tube Polyethylène Haute Densité	295 299 302 303
Tube Polyamide PA 11 PHL RILSAN® - PA 12 PHL MB-Longlife™ Tube Polyuréthane PU 98 MB-Longlife™ Multitubes Polyéthylène Série MTP Tube Polyethylène Haute Densité Tube Silicone Série SI	295 299 302 303 304
Tube Polyamide PA 11 PHL RILSAN® - PA 12 PHL MB-Longlife™	295 302 303 304 305
Tube Polyamide PA 11 PHL RILSAN® - PA 12 PHL MB-Longlife™	295 299 302 304 305 306

Tuyaux caoutchouc Air comprimé - 15 bar	310
Tuyaux caoutchouc Air comprimé antistatique	
Tuyaux caoutchouc Multiservice - Hydrocarbures	312
Gaines de protection spiralées GSP	313
Gaine	
Accessoires	315
Débit d'air	
Special agricole	327
Special freins pneumatiques	
•	

331

RESERVOIRS, RESEAUX D'AIR ET TRAITEMENT DE L'AIR

Traitement de l'air	
Lignes modulaires Série M14 - G1/4	335
Lignes modulaires Série M38- G3/8	340
Lignes modulaires Série M12- G1/2	
Lignes modulaires Série M34- G3/4	349
Lignes modulaires Série M10 - G1	353
Filtres pour air comprimé	355
Compresseurs pneumatiques Air Pack	
Compresseurs pneumatiques Série Top : Haut rendement non lubrifié	358
Compresseurs pneumatiques Série Hobby : Compresseurs coaxiaux	362
Compresseurs pneumatiques silencieux à air	
Compresseurs pneumatiques à air avec transmission à courroie	364
Série 24/100	365
Série 24/200 «E»	366
Série 150/200	367
Série 200	368
Série 270	369
Série 24/100	370
Compresseurs pneumatiques verticaux avec transmission à courroie	370
Série 1000	371
Compresseurs pneumatiques à pieds fixes avec transmission à courroie	372
Série 500	373
Compresseurs TANDEM Série 1000	374
Compresseurs sur base	
Compresseurs à moteur thermique Série 24/270	378
Compresseurs silencieux	379
Compresseurs silencieux sur réservoir mono et bi-cylindre	381
Compresseurs silencieux sur réservoir mono et bi-cylindre avec sécheur	382
Série GSE5 - GSE7 - GSE10	383
Compresseurs à vis	
Série GSR10 - GSR15	384
Série GSR20 - GSR25 - GSR30	385
Série GSR40 - GSR50	386
Série GSE5/300 > GSR15/500	
Compresseurs à vis sur réservoir Séries GSE5 - GSE7 - GSE10 - GSE15	388
Compresseurs à vis sur réservoir avec sécheur Séries GSEI7 - GSEI10	389
Compresseurs à vis avec convertisseur de fréquence	
Série GSRI10 - GSRI15	390
Série GSERI20 - GSERI25 - GSERI30	391
Série GSRI40 - GSRI50	
Dessicateurs cycle frigorifique	394
Réservoirs Courant continu - Courant alternatif	395
Réservoirs à air comprimé	398
Réseau d'air en tube aluminium	

ACTIONNEURS

DISTRIBUTION

SÉCURITÉ

RÉSERVOIRS RÉSEAUX D'AIR

Vérins CNOMO

Fabrication 24/48h

suivant modèle nous consulter

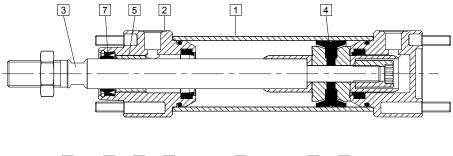
Alésage : Ø 25, 32, 40, 50, 63, 80, 100, 125, 160 et 200 mm

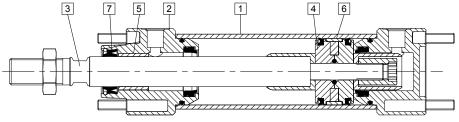
Courses : A la demande

Tige: Acier chromé Cr45, acier inox chromé

AISI 304

Tube: Aluminium anodisé


Tirants : Inox Fonds : Aluminium


Températures de travail : -20°C à +80°C Lubrification : Avec ou sans lubrification

Fluide : Air filtré

Pression maxi de travail : 10 bar Amortisseur : Réglage pneumatique

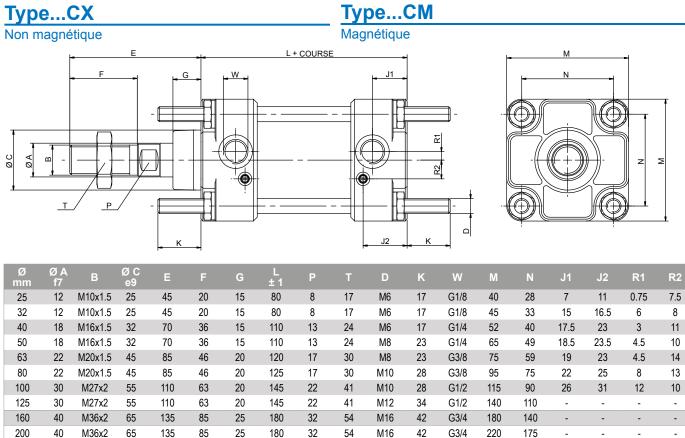
Caractéristiques techniques

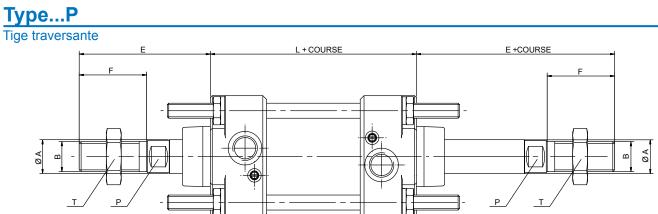
М	atériaux	
1	Tube	Aluminium anodisé
2	Têtes et fonds	Aluminium moulé
3	Tige	Acier C45 chromé
4	Piston	Monobloc (CX) Aluminiuù (CM)
5	Douille	Bronze sintérisé autolubrifiant
6	Patin de guidage	Delrin naturel (CM)
7	Joint de tige	Polyuréthane
	Autres joints	Caoutchouc nitrile NBR / polyuréthane

Variantes

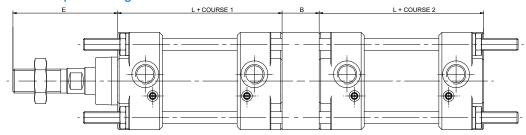
Variante	Sigle
Tige traversante	P
Joints FKM max 150°C	V
Tandem en poussée tiges unies	TA1
Tandem en poussée tiges dégagées	TA2
Tandem opposés	TA3
Tandem opposés frontaux	TA4
Versions spéciales sur demande	/S

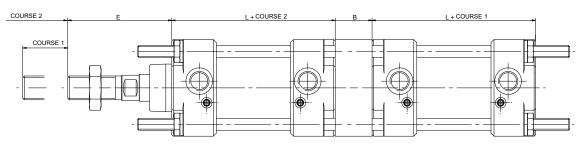
Les variantes peuvent étre combinées entre elles (quand cela est possible)


Exemple pour la commande : 50 / 200CVX

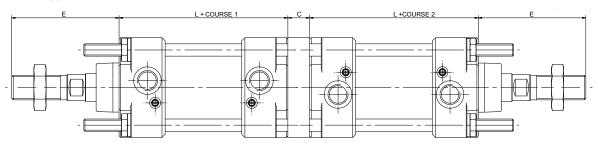

50	/	200	CX	V
Alésage	/	Course	Type	Variante

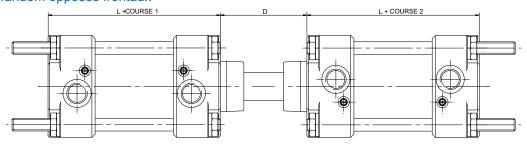
Dimensions standard


Ø	ØΑ	В	Е	E	L	D	T
mm	f7	ь			± 1	'	
25	12	M10x1.5	45	20	90	8	17
32	12	M10x1.5	45	20	90	8	17
40	18	M16x1.5	70	36	129	13	24
50	18	M16x1.5	70	36	129	13	24
63	22	M20x1.5	85	46	143	17	30
80	22	M20x1.5	85	46	143	17	30
100	30	M27x2	110	63	164	22	41
125	30	M27x2	110	63	164	22	41
160	40	M36x2	135	85	200	32	54
200	40	M36x2	135	85	200	32	54



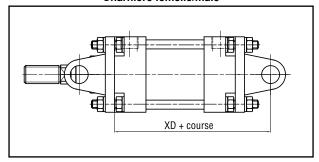
Variantes

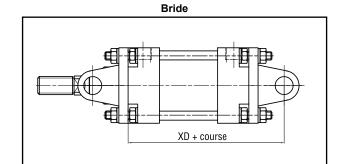

Type...TA1
Tandem en poussée tiges unies

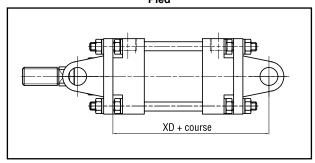

Type...TA2
Tandem en poussée tiges dégagées

Type...TA3 Tandem opposés

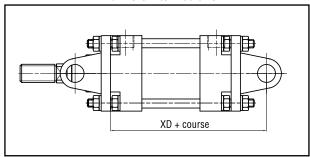
Type...TA4 Tandem opposés frontaux

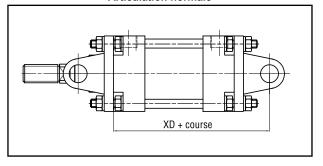

Ø	E	L	В	С	D
25	45	80	30	5	36
32	45	80	30	5	38
40	70	110	30	8	40
50	70	110	30	8	47
63	85	125	40	10	59
80	85	125	40	10	62
100	110	145	40	15	55
125	110	145	40	15	80
160	135	180	50	20	102
200	135	180	50	20	87

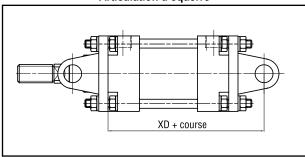



Vérins CNOMO avec accessoires

Charnière femelle/mâle




Pied


Charnière intermédiaire

Articulation normale

Articulation d'équerre

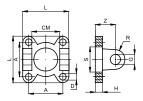
Ø mm	A max	АН	В	С	D	E	SA	W	XA	XD	XV min	XV max	2F
32	46	32	18	18	32	20	134	8	107	98	32.5	47.5	96
40	58	36	26	25	45	32	164	8	137	134	41	69	126
50	68	45	26	25	45	32	180	10	145	138	45	65	130
63	84	45	34	32	63	50	195	10	160	155	52.5	72.5	145
80	102	63	34	32	63	50	211	12	168	157	52.5	72.5	149
100	124	73	41	40	90	70	231	12	188	182	57	88	169
125	152	91	41	40	90	70	249	15	197	186	58	87	175
160	190	115	55	50	140	110	304	20	242	235	67	113	220
200	250	135	55	50	140	110	304	20	242	235	68	112	220

Dimensions et codes des accessoires. Voir page suivante

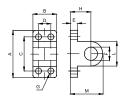
ChapesVérins CNOMO

Matériaux: Aluminium moulé sous pression ou

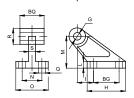
Traitement : Blutage


Les vis de fixation sont à commander séparement

Accessoires de fixation aluminium

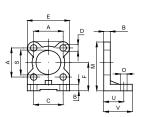

Type CFCN

Charnière femelle


Référence	Ø	Α	L	D	Н	СМ	S	R	Z	G	Poids (g)
47.CFCN.032	32	33	45	7	8	26	25	8	18	8	38
47.CFCN.040	40	40	52	7	8	33	32	12	24	12	58
47.CFCN.050	50	49	65	9	10	33	32	12	26	12	118
47.CFCN.063	63	59	75	9	10	47	45	16	30	16	146
47.CFCN.080	80	75	95	11	12	47	45	16	32	16	324
47.CFCN.100	100	90	115	11	12	57	55	20	37	20	492
47.CFCN.125	125	110	140	14	16	57	55	21	41	20	978
47.CFCN.160	160	140	180	18	20	72	65	25	55	25	1872
47.CFCN.200	200	175	220	18	20	72	65	25	55	25	2800

Type ANCN Charnière normale

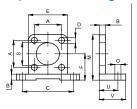
Référence	Ø	Α	В	С	D	Е	F	G	Н	L	M	Poids (g)
47.ANCN.032	32	40	25	28	-	8	8	7	18	16	26	26
47.ANCN.040	40-50	52	32	38	16	10	12	9	26	24	38	56
47.ANCN.063080	63-80	75	46	54	25	12	16	11	34	36	52	176
47.ANCN.100125	100-125	115	56	90	32	16	20	14	41	40	61	376
47.ANCN.160200	160-200	180	71	150	43	20	25	18	55	50	80	924


Type ASCN Charnière équerre

Référence	Ø	Q	BG	Н	1	L	M	N	0	S	R	BQ	G	Poids (g)
47.ASCN.032	32	7	20	37	18	8	32	25	41	9	19,5	25	8	58
47.ASCN.040	40-50	9	32	54	25	10	45	32	52	14	26	32	12	144
47.ASCN.063080	63-80	11	50	75	32	13	63	40	63	14	32	46	16	300
47.ASCN.100125	100-125	14	70	103	40	17	90	50	80	22	42	56	20	694
47.ASCN.160200	160-200	18	110	154	50	20	140	63	111	26	54	70	25	1922

Type PLCN

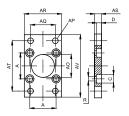
Equerre haute



Référence	Ø	Α	В	С	D	Е	F	М	0	S	U	V	PCN.oids (g)
47.PCN.032	32	33	8	28	7	45	32	54	9	25	27	35	54
47.PCN.040	40	40	8	36	7	52	36	62	9	32	27	35	70
47.PCN.050	50	49	10	45	9	65	45	77	11	32	35	45	150
47.PCN.063	63	59	10	55	9	75	50	87	11	45	35	45	170
47.PCN.080	80	75	12	70	11	95	63	110	14	45	43	55	354
47.PCN.100	100	90	12	90	11	115	73	130	14	55	43	55	470
47.PCN.125	125	110	16	110	14	140	91	161	18	55	52	68	918
47.PCN.160	160	140	20	130	18	180	115	205	22	65	62	82	2300
47.PCN.200	200	175	20	170	18	220	135	245	22	65	62	92	3450

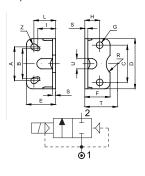
Type PL

Equerre haute large


Référence	Ø	Α	В	С	D	Е	F	М	0	S	U	V	Z	Poids (g)
47.PLCN.032	32	33	8	65	7	46	32	54	9	25	18	35	82	76
47.PLCN.040	40	40	8	72	7	52	36	62	9	32	18	35	90	90
47.PLCN.050	50	49	10	90	9	65	45	77	11	32	22	45	110	188
47.PLCN.063	63	59	10	100	9	75	50	87	11	45	22	45	120	206
47.PLCN.080	80	75	12	126	11	95	63	110	14	45	28	55	154	410
47.PLCN.100	100	90	12	148	11	115	73	130	14	55	28	55	180	576
47.PLCN.125	125	110	16	180	14	140	91	161	18	55	32	67,5	215	1058
47.PLCN.160	160	140	20	230	18	180	115	206	22	65	40	80	275	2350
47.PLCN.200	200	175	20	270	18	220	135	246	22	65	40	80	318	3100

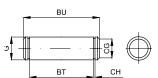
Accessoires de fixation acier

Type FLCN


Bride lamée

Référence	Ø	Α	AP	AO	R	AS	AR	AQ	AT	AV	С	D	Poids (g)
47.FLCN.032	32	33	9	25	6,5	8	45	33	69	80	10,5	6	158
47.FLCN.040	40	40	9	32	6,5	8	52	40	78	90	10,5	6	206
47.FLCN.050	50	49	11	32	9	10	65	49	94	110	13,5	8	424
47.FLCN.063	63	59	11	45	9	10	75	59	104	120	13,5	8	504
47.FLCN.080	80	75	14	45	10,5	12	95	75	130	150	16,5	10	1046
47.FLCN.100	100	90	14	55	10,5	12	115	90	150	170	16,5	10	1480
47.FLCN.125	125	110	18	55	13,5	16	140	110	180	205	19	12,5	3000
47.FLCN.160	160	140	22	65	16,5	20	180	140	228	260	24,5	16,5	6300
47.FLCN.200	200	175	22	65	16,5	20	220	175	268	300	24,5	16,5	9300

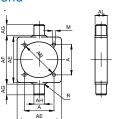
Type PBCN


Equerre basse

Référence	Ø	A	В	С	D	E	F	G	Н	1	L	M	N	R	S	Т	U	Poids (g)
47.PBCN.032	32	28	32	33	45	35	30	7	15,5	22	27	4,5	3,5	12,5	4	32	11	66
47.PBCN.040	40	36	36	40	52	36	30	7	16	26	27	4,5	4,5	16	4	36	15	78
47.PBCN.050	50	45	45	49	65	45	36	9	20,5	30	35	505	4,5	16	5	45	16	168
47.PBCN.063	63	55	50	59	75	45	35	9	20,5	30	35	5,5	4,5	22,5	5	50	18	190
47.PBCN.080	80	70	63	75	95	55	45	11	25,5	37	43	7	5,5	22,5	6	63	17	382
47.PBCN.100	100	90	75	90	115	56	44	11	27	37,5	43	7	6,5	27,5	6	73	24	452
47.PBCN.125	125	100	-	110	140	70	70	14	36	-	52	9	-	27,5	8	91	-	1090
47.PBCN.160	160	130	-	140	180	75	100	18	45	-	62	11	-	32,5	10	115	-	1180
47.PBCN.200	200	170	-	175	220	100	100	18	47	-	62	11	-	32,5	12	135	-	3450

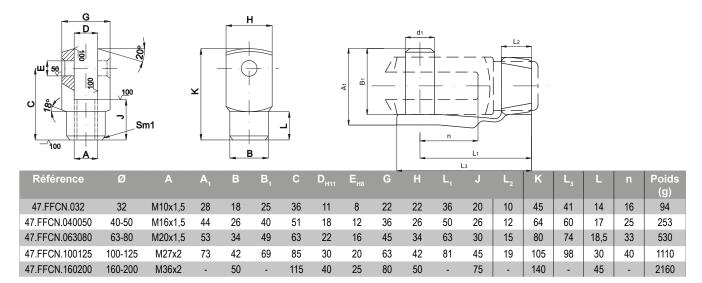
Type SECCN

Tourillon pour charnière femelle



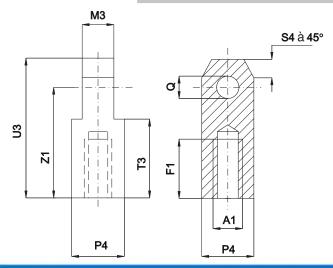
Référence	Ø	G	ВТ	CG	СН	BU	Poids (g)
47.SECCN.032	32	8	46	7,6	1,1	53	21
47.SECCN.040	40	12	53	11,5	1,1	60	52
47.SECCN.050	50	12	66	11,5	1,1	73	64
47.SECCN.063	63	16	76	15,2	1,1	83	130
47.SECCN.080	80	16	96	15,2	1,1	103	160
47.SECCN.100	100	20	117	19	1,3	124	304
47.SECCN.125	125	20	142	19	1,3	149	364
47.SECCN.160	160	25	182	23,9	1,3	189	720
47.SECCN.200	200	25	222	23,9	1,3	229	872

Type CTCN


Tourillon intermédiaire rond

Référence	Ø	Α	AE	AL	AH	AG	AF	AN	R	М	Poids (g)
47.CTCN.032	32	33	46	15	12	12	50	37	1	M6	130
47.CTCN.040	40	40	59	20	16	16	63	46	1,5	M6	306
47.CTCN.050	50	49	69	20	16	16	73	56	1,6	M8	370
47.CTCN.063	63	59	84	25	20	20	90	69	1,6	M8	702
47.CTCN.080	80	75	102	25	20	20	108	87	1,6	M10	894
47.CTCN.100	100	90	125	30	25	25	131	107	2	M10	1590
47.CTCN.125	125	110	155	32	25	25	160	133,5	2	M12	2600
47.CTCN.160	160	140	190	40	32	32	200	171	2,5	M16	4300
47.CTCN.200	200	175	240	40	32	32	250	211	2,5	M16	7450

Type FFCN


Chape de tige

Type FMCN

Chape de tige

Référence	Ø	A ₁	F,	M ₃	P₄	Q _{h8}	S ₄	T ₃	U ₃	Z,	L,
47.FMCN.032	32	M10x1,5	20	11	22	8	6	25	45	36	36
47.FMCN.040050	40-50	M16x1,5	30	18	32	12	10	34	64	51	50
47.FMCN.063080	63-80	M20x1,5	36	22	36	16	12	41	80	63	63
47.FMCN.100125	100-125	M27x2	50	30	45	20	17,5	58	105	85	81
47.FMCN.160200	160-200	M36x2	70	40	63	25	20	81	140	115	-

NWT ___/____

(mm):

Ø32 32

Ø40 **40** Ø50 **50** Ø63 **63**

Ø80 **80** Ø100 ... **100**

Ø125 ... **125**

Course

(mm):

Alésage

VS Joint de tige Viton

VV Tous joints Viton

Tige de piston-cylindre

SEA Ressort avant simple effet

SEP Ressort arrière simple effet

Vérins pneumatiques ISO 15552

Série NWT

Fabrication 24/48h

suivant modèle nous consulter

Tige: Acier ou inox chromé

Corps : Tube profilé en aluminium anodisé

Joint : Polyuréthane

Amortisseur: Réglage pneumatique

Températures ambiantes : -10°C à +80°C Températures de fluide : 0°C à +40°C

Lubrification: Non requise

Fluide : Air filtré

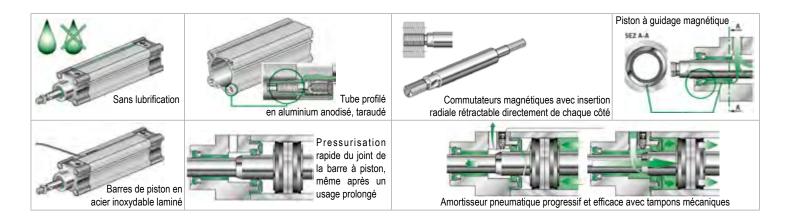
Pression maxi de travail: 10 bar

Alésage								Соц	ırse	stan	daro	t						
	25	50	80	100	125	160	200	250	300	350	400	450	500	600	700	800	900	1000
								m	m									
32	•	•	•	•	•	•	•	•	•	•	•	•	•					
40	٠	•	•	•	•	•	٠	•	•	•	•	•	•					
50	•	•	•	•	•	•	•	•	•	•	•	•	•					
63	•	•	•	•	•	•	•	•	•	•	•	•	•					
80	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
125	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Coussin de réglage pneumatique et amortisseur de choc mécanique
Piston aluminium moulé sous pression Ø 63-80-100, Piston polymère acétal Ø 32-40-50

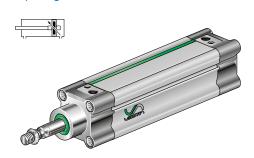
Piston magnétique standard

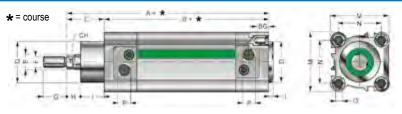
Cône d'amortissement et bague de guidage en polymère acétal


Acier inox X20 Cr13 roulé

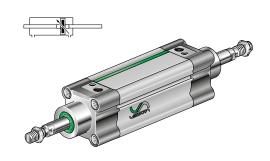
Acier inox X20 Cr13 roulé

Embout en alliage aluminium moulé sous pression


Joint en polyuréthane


Tube profilé en aluminium anodisé dur

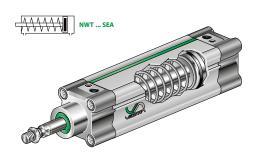
NWT ... / ... Simple tige

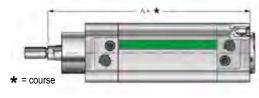


Alésage	Α	В	С	Ø D	ØΕ	ØF	G mm		1	L	M	N	ØО	ØР	BG	СН
32	120	94	26	30	12	M10 × 1,25			18	4	45	32.5	M6	G1/8	16	10
40	135	105	30	35	16	M12 × 1,25	24	8.5	21.5	4	54	38	M6	G1/4	16	13
50	143	106	37	40	20	M16 × 1,5	32	9	28	4	64	46.5	M8	G1/4	16	17
63	158	121	37	45	20	M16 × 1,5	32	8.5	28.5	4	75	56.5	M8	G3/8	16	17
80	174	128	46	45	25	M20 × 1,5	40	11.5	34.5	4	93	72	M10	G3/8	18	21
100	189	138	51	55	25	M20 × 1,5	40	13	38	4	110	89	M10	G1/2	18	21
125	225	160	65	60	30**	M27 × 2*	54*	30	35	5	142	110	M12	G1/2	22	27

^{*} Sur demande. F=M24 × 2, G=48

NWT ... / ... P Tige traversante

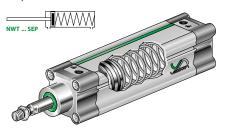



Alésage	Α	В	С	ØD	ØE	ØF	G	Н	H1		М	N	ØО	ØР	BG	СН
							mm									
32	120	94	26	30	12	M10 × 1,25	20	8	26	18	45	32.5	M6	G1/8	16	10
40	135	105	30	35	16	M12 × 1,25	24	8.5	30	21.5	54	38	M6	G1/4	16	13
50	143	106	37	40	20	M16 × 1,5	32	9	37	28	64	46.5	M8	G1/4	16	17
63	158	121	37	45	20	M16 × 1,5	32	8.5	37	28.5	75	56.5	M8	G3/8	16	17
80	174	128	46	45	25	M20 × 1,5	40	11.5	46	34.5	93	72	M10	G3/8	18	21
100	189	138	51	55	25	M20 × 1,5	40	13	51	38	110	89	M10	G1/2	18	21
125	225	160	65	60	30**	M27 × 2*	54*	30	65	35	142	110	M12	G1/2	22	27

^{*} Sur demande. F=M24 × 2, G=48

NWT .../... **SEA**

Simple effet ressort avant



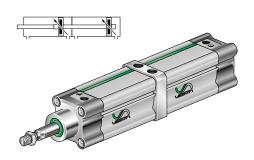
Alésage	Α
mr	n
32	120
40	135
50	143
63	158
80	174
100	189

C						Fo	rce di	u ress	ort					
Course	Ø 32	2mm	Ø 40)mm	Ø 50	mm	Ø 63	3mm	Ø 80)mm	Ø 10	0mm	SEA	SEP
mm	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	OLA	OL.
10	50	54	72	82	110	123	110	123	166	180	166	180	•	•
20	44	54	62	82	98	123	98	123	152	180	152	180	•	•
30	40	54	52	82	86	123	86	123	137	180	137	180	•	•
40	35	54	42	82	73	123	73	123	123	180	123	180	•	•
50	30	54	32	82	60	123	60	123	110	180	110	180	•	•

NWT ... / ... SEP

Simple effet ressort arrière

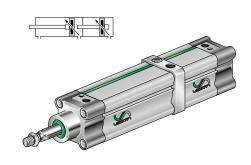
	Alésage mm	Α
	32	120
	40	135
1	50	143
1	63	158
1	80	174
1	100	189


^{**} Tige de piston sur demande Ø E=32 mm

^{**} Tige de piston sur demande \varnothing E=32 mm

NWT ... TN2

Vérin double multi-poussées

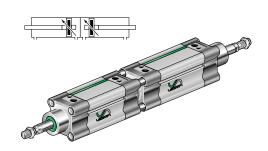



Alésage	Α	A1	В	С	D	Е
			mm			
32	156	68	20	26	20	182
40	175	73.5	28	30	24	205
50	171	76.5	18	37	32	208
63	191	85	21	37	32	228
80	205	91.5	22	46	40	251
100	224	98.5	27	51	40	275
125	265	115	35	65	54*	330

* Sur demande. D=48

NWT ... BS

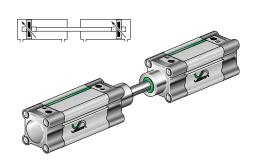
Vérin multi-positions

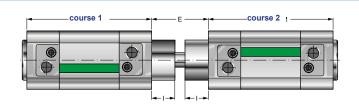


Alésage	Α	A1	B nm	С	D	Е
32	156	68	20	26	20	182
40	175	73.5	28	30	24	2 05
50	171	76.5	18	37	32	208
63	191	85	21	37	32	228
80	205	91.5	22	46	40	251
100	224	98.5	27	51	40	275
125	265	115	35	65	54*	330

NWT ... CNP

Arrière opposé




n+course 1+ course 2

Alésage	Α	В	С	D	Е	
3		mm				
32	196	248	26	20	8	
40	218	278	30	24	8	
50	220	294	37	32	8	
63	250	324	37	32	8	
80	264	356	46	40	8	
100	284	386	51	40	8	
125	330	460	65	54*	10	* \$

NWT ... CNP ... F

Avant opposé

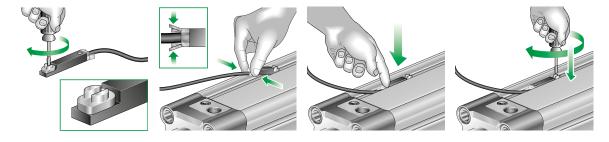
Alésage	Α	E	
		mm	
32	94	48	18
40	105	54	21.5
50	106	69	28
63	121	69	28.5
80	128	86	34.5
100	138	91	38
125	160	100	35

* Sur demande. D=48

Détecteurs magnétiques pour verins NWT

VNCR2 avec connecteur **REED**

VNCE3 avec connecteur 3 pôles

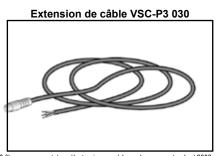


Sur demande VNPR2 disponible pour connexion des interrupteurs : VNPR3 VNPE3 avec câble direct 3 pôles

Bush Bush Bush Bush Bush Bush Bush Bush	Both O b PNP

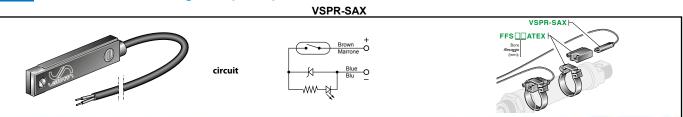
Code	Voltage	Courant de commutation	Capacité de commutation	Degré de protection	T° de travail	Durée ON	Durée OFF	Vie électrique	Résistance du contact
	V	mA	VA		°C			impulsion	Ω
VNCR2	3-48 AC-DC	100	6	IP67	-20 à +85	0,5 msec	0,1 msec	10 ⁷	0,1
VNPR2	3-48 AC-DC	100	6	IP67	-20 à +85	0,5 msec	0,1 msec	10 ⁷	0,1
VNCE3	6-30 DC	200	4	IP67	-20 à +85	0,8 µsec	0,3 µsec	10 ⁹	-
VNPE3	6-30 DC	200	4	IP67	-20 à +85	0,8 µsec	0,3 µsec	10 ⁹	-

Mise en place du détecteur magnétique



Pièces de rechange pour verins NWT

Bandelette plastique de recouvrement NWT-PCC



Kit de joints - SG

3 fils pour commutateur électronique ou à lame Longueur standard 3000 mm

Détecteurs magnétiques pour verins ATEX

La nouvelle gamme de vérins compacts NSK, fabriquée avec un seul ensemble de composants de base pour l'assemblage final, est conçue dans la norme ISO 21287 ou UNITOP (solution brevetée).

L'extrême simplicité de construction, le nouveau design et la technologie de production innovante, font de cette série une gamme répondant aux besoins les plus exigeants de performance et de fiabilité, avec une grande flexibilité.

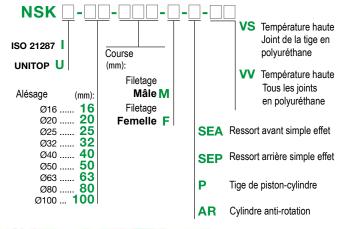
Vérins pneumatiques compacts ISO 21287 ou UNITOP

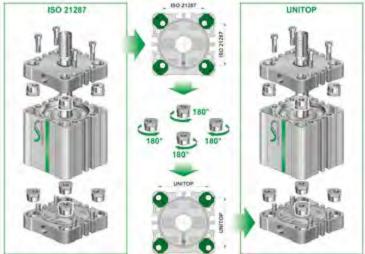
Série NSK

Tige : Acier ou inox chromé

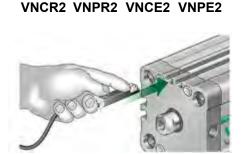
Corps : Tube profilé en aluminium anodisé

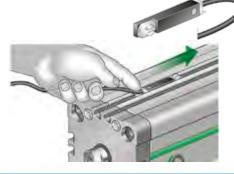
Joint : Polyuréthane


Températures ambiantes : -20°C à +80°C Températures de fluide : 0°C à +30°C

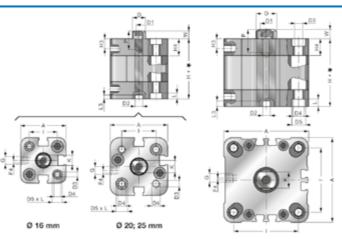

Lubrification: Non requise

Fluide : Air filtré


Pression maxi de travail: 10 bar

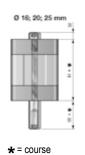

Fabrication 24/48h suivant modèle nous consulter

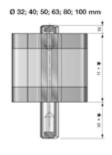
Mise en place de l'interrupteur magnétique



* = course

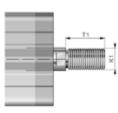
Ø	Force de poussée	Force en tirant	Plage de pression
	P=6 bar	P=6 bar	bar
16	121N	91N	1.6 - 10
20	188N	142N	1.5 - 10
25	295N	248N	1.2 - 10
32	482N	415N	1.1 - 10
40	754N	687N	0.9 - 10
50	1178N	1058N	0.8 - 10
63	1869N	1750N	0.7 - 10
80	3014N	2829N	0.6 - 10
100	4710N	4420N	0.5 - 10


												,,	,			
						Star	ndard	ISC	212	287						
Ø	Α	ØD	ØD2	ØD3	ØD4	ØD5	G	Н3	H4		K	L	L3	W	F4	н
							n	nm								
16	29.2	8	6	3.3	M4	6	M5	7	12.8	18	6	3.5	2.2	4.5	0	37 (±0.5)
20	37	10	6	4.2	M5	7.5	M5	7	12.3	22	8	4.2	2.5	6	4	37 (±0.5)
25	41	10	6	4.2	M5	7.5	M5	7.5	13.5	26	8	4.2	2.5	6	3	39 (±0.5)
32	49.2	12	6	5.2	M6	9	G1/8	7.5	15	32.5	10	4.5	2	7	0	44 (±0.5)
40	57.2	12	6	5.2	M6	9	G1/8	7.5	15	38	10	4.2	2	7	0	45 (±0.7)
50	67	16	8	6.7	M8	10.5	G1/8	7.5	14.6	46.5	13	4.7	2.5	8	0	45 (±0.7)
63	80	16	8	6.7	M8	10.5	G1/8	8	15.5	56.5	13	5.2	2.5	8	0	49 (±0.8)
80	102.6*	20	8	8.5	M10	13.5	G1/8	9	17	72	17	5.2	2.5	10	0	54 (±0.8)
100	124	25	8	8.5	M10	13.5	G1/4*	10	20	89	22	5.2	3	10	0	67 (±1.0)


	Standard UNITOP															
Ø	A	ØD	ØD2	ØD3	ØD4	ØD5	G	H3 mn	H4		K	L	L3	W	F4	н
16	29.2	8	6	3.3	M4	6	M5	7	12.8	18	6	3.5	2.2	4.5	0	38 (±0.5)
20	37	10	6	4.2	M5	7.5	M5	7	12.3	22	8	4.2	2.5	4.5	4	38 (±0.5)
25	41	10	6	4.2	M5	7.5	M5	7.5	13.5	26	8	4.2	2.5	5.5	3	39.5 (±0.5)
32	49.2	12	6	5.2	M6	9	G1/8	7.5	15	32	10	4.5	2	6	0	44.5 (±0.5)
40	57.2	12	6	5.2	M6	9	G1/8	7.5	15	42	10	4.2	2	6.5	0	45.5 (±0.7)
50	67	16	8	6.7	M8	10.5	G1/8	7.5	14.6	50	13	4.7	2.5	7.5	0	45.5 (±0.7)
63	80	16	8	6.7	M8	10.5	G1/8	8	15.5	62	13	5.2	2.5	7.5	0	50 (±0.8)
80	102.6	20	8	8.5	M10	13.5	G1/8	9	17	82	17	5.2	2.5	8	0	56 (±0.8)
100	124	25	8	8.5	M10	13.5	G1/4	10	20	103	22	5.2	3	10	0	66.5 (±1.0)

NSK . - .. P

Vérin double effet avec tige traversante

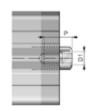


Sta	ndar	d ISO 21287
Ø	W	Н
		mm
16	4.5	37 (±0.5)
20	6	37 (±0.5)
25	6	39 (±0.5)
32	7	44 (±0.5)
40	7	45 (±0.7)
50	8	45 (±0.7)
63	8	49 (±0.8)
80	10	54 (±0.8)
100	10	67 (±1.0)

ı		Standa	rd UNITOP
ı	Ø	W	Н
ı			mm
Г	16	4.5	38 (±0.5)
	20	4.5	38 (±0.5)
	25	5.5	39.5 (±0.5)
	32	6	44.5 (±0.5)
	40	6.5	45.5 (±0.7)
	50	7.5	45.5 (±0.7)
	63	7.5	50 (±0.8)
	80	8	56 (±0.8)
Г	100	10	66 5 (+1 0)

NSK . - M

Version tige mâle filetée



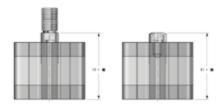
	S	tandard IS 21287	0
11 _	Ø	K1	T1
*	16	M8 × 1.25	20
	20	M8 × 1.25	16
	25	M8 × 1.25	16
	32	M10 × 1.25	19
	40	M10 × 1.25	19
	50	M12 × 1.25	22
	63	M12 × 1.25	22
	80	M16 × 1.5	28
	100	M16 × 1.5	28

Stan	dard UNIT	ОР
Ø	K1	T1
16	M8 × 1.25	20
20	M10 × 1.25	22
25	M10 × 1.25	22
32	M10 × 1.25	22
40	M10 × 1.25	22
50	M12 × 1.25	24
63	M12 × 1.25	24
80	M16 × 1.5	32
100	M20 × 1.5	40

NSK . - ... F

Version tige femelle tarraudée

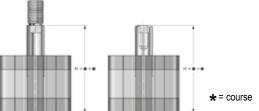
			_		
Sta	andard l	SO	Stan	dard UN	ITOP
Ø	21287 ØD1	Р	Ø	ØD1	Р
16	M4	8	16	M4	8
20	M6	10	20	M6	10
25	M6	10	25	M6	10
32	M8	12	32	M8	12
40	M8	12	40	M8	12
50	M10	16	50	M8	12
63	M10	16	63	M8	14
80	M12	20	80	M10	15
100	M12	20	100	M12	20



NSK . - .. SEA

Vérin simple effet avec ressort avant

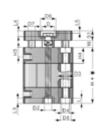
	Force maxi du ressort	Force mini du ressort	H ISO	н
Ø	(course 0	(course 25	21287	UNITOP
	mm)	mm)		
16	21	12	37 (±0.5)	38 (±0.5)
20	39	22	37 (±0.5)	38 (±0.5)
25	45	28	39 (±0.5)	39.5 (±0.5)
32	45	28	44 (±0.5)	44.5 (±0.5)
40	61	39	45 (±0.7)	45.5 (±0.7)
50	90	58	45 (±0.7)	45.5 (±0.7)
63	95	62	49 (±0.8)	50 (±0.8)
80	115	150	54 (±0.8)	56 (±0.8)
100	125	160	67 (±1.0)	66.5 (±1.0)



NSK . - .. SEP

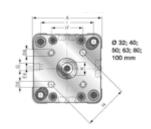
Vérin simple effet avec ressort arrière

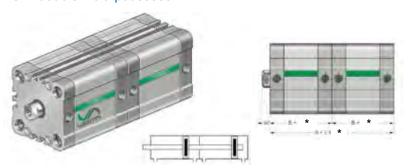
	Force maxi	Force mini		
a	du ressort	du ressort	H ISO	н
Ø	(course 0 mm)	(course 25	21287	UNITOP
	(coarse o min)	mm)		
16	21	12	47 (±0.5)	48 (±0.5)
20	39	22	47 (±0.5)	48 (±0.5)
25	45	28	59 (±0.5)	59.5 (±0.5)
32	45	28	64 (±0.5)	64.5 (±0.5)
40	61	39	65 (±0.7)	65.5 (±0.7)
50	90	58	65 (±0.7)	65.5 (±0.7)
63	95	62	69 (±0.8)	70 (±0.8)
80	115	150	84 (±0.8)	86 (±0.8)
100	125	160	97 (±1.0)	96.5 (±1.0)



NSK . - .. AR

Vérin double effet anti-rotation



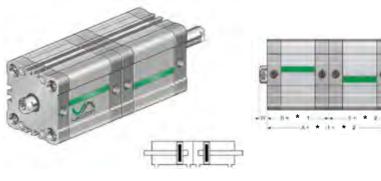

	Ø	Α	ØD	ØD2	ØD3	ØD4	ØD6	ØD7	ØD8	ØD9	G	Н3	H4		14	17	K	L	L3	L4	W	F4	S1	W	Н
	16	29.2	8	6	3.3	M4	9	5	М3	3	M5	7	12.8	18	14	9,9	6	3.5	2.2	4	4,5	0	6	4,5	37 (±0,5)
_	20	37	10	6	4.2	M5	11	5	M4	4	M5	7	12.3	22	17	12	8	4.2	2.5	5	6	4	8	4,5	37 (±0,5)
ᅙ	25	41	10	6	4.2	M5	14	6	M5	5	M5	7.5	13.5	26	22	15,6	8	4.2	2.5	5	6	3	8	5,5	39 (±0,5)
ΞI	32	49.2	12	6	5.2	M6	17	8	M5	5	G1/8	7.5	15	32,5	28	19,8	10	4.5	2	6,5	7	0	10	6	44 (±0,5)
\supseteq	40	57.2	12	6	5.2	M6	17	10	M5	5	G1/8	7.5	15	38	33	23,3	10	4.2	2	6,5	7	0	10	6,5	45 (±0,7)
lard	50	67	16	8	6.7	M8	22	10	M6	6	G1/8	7.5	14.6	46,5	42	29,7	13	4.7	2.5	7,5	8	0	12	7,5	45 (±0,7)
and	63	80	16	8	6.7	M8	22	10	M6	6	G1/8	8	15.5	56,5	50	35,4	13	5.2	2.5	7,5	8	0	12	7,5	49 (±0,8)
ξ	80	102.6	20	8	8.5	M10	28	14	M8	8	G1/8	9	17	72	65	46	17	5.2	2.5	9	10	0	14	8	54 (±0,8)
	100	124	25	8	8.5	M10	30	14	M10	10	G1/4	10	20	89	80	56,6	22	5.2	3	10	10	0	14	10	67 (±1,0)

87	Ø	Α	ØD	ØD2	ØD3	ØD4	ØD6	ØD7	ØD8	ØD9	G	Н3	H4		14	17	K	L	L3	L4	W	F4	S1	W	Н
12	16	29,2	8	6	3.3	M4	9	5	M3	3	M5	7	12.8	18	14	9,9	6	3.5	2.2	4	4.5	0	6	4,5	38 (±0.5)
0.2	20	37	10	6	4.2	M5	11	5	M4	4	M5	7	12.3	22	17	12	8	4.2	2.5	5	4.5	4	8	4,5	38 (±0.5)
<u>8</u>	25	41	10	6	4.2	M5	14	6	M5	5	M5	7.5	13.5	26	22	15,6	8	4.2	2.5	5	5.5	3	8	5,5	39.5 (±0.5)
ard	32	49,2	12	6	5.2	M6	17	8	M5	5	G1/8	7.5	15	32	28	19,8	10	4.5	2	6,5	6	0	10	6	44.5 (±0.5)
ᅙᅵ	40	57,2	12	6	5.2	M6	17	10	M5	5	G1/8	7.5	15	42	33	23,3	10	4.2	2	6,5	6.5	0	10	6,5	45.5 (±0.7)
Star	50	67	16	8	6.7	M8	22	10	M6	6	G1/8	7.5	14.6	50	42	29,7	13	4.7	2.5	7,5	7.5	0	12	7,5	45.5 (±0.7)
0)	63	80	16	8	6.7	M8	22	10	M6	6	G1/8	8	15.5	62	50	35,4	13	5.2	2.5	7,5	7.5	0	12	7,5	50 (±0.8)
	80	102,6	20	8	8.5	M10	28	14	M8	8	G1/8	9	17	82	65	46	17	5.2	2.5	9	8	0	14	8	56 (±0.8)
	100	124	25	8	8.5	M10	30	14	M10	10	G1/4	10	20	103	80	56,6	22	5.2	3	10	10	0	14	10	66.5 (±1.0)

NSK ... **TN2** ...

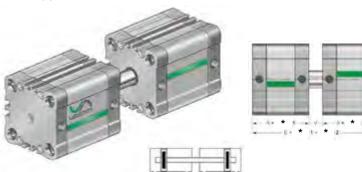
Vérin double multi-poussées

Ø	Α	В
	mm	
16	76	38
20	76	38
25 32	79	39.5
32	88.4	44.2
40	90.4	45.2
50	90.4	45.2
50 63	99	49.5
80	110	55
100	133.4	66.7


NSK ... BS ...

Ø	Α	В
	mm	
32	88.4	44.2
40	90.4	45.2
50	90.4	45.2
63	99	49.5
80	110	55
100	133 4	66 7

NSK ... CNP ...


Vérin opposé arrière

Ø	Α	В
	mm	
16	76	38
20	76 79	38
20 25	79	39.5
32	88.4	44.2
40	90.4	45.2
50	90.4	45.2
63	99	49.5
80	110	55
100	133.4	66.7

NSK ... CNF ...

Vérin opposé avant

Ø	Е	A mm	V
16	85	38	9
20	85	38	9
25	90	39.5	11
32	100.4	44.2	12
40	103.4	45.2	13
50	104.4	45.2	15
63	114	49.5	15
80	126	55	16
100	153.4	66.7	20

Vérins pneumatiques à tirants ISO 15552

Série XJC

Fabrication 24/48h suivant modèle

nous consulter

Tige : Acier ou inox chromé

Corps : Tube en aluminium anodisé

Tirants: Acier inoxydable **Joints**: Polyuréthane

Amortisseur: Réglage pneumatique

Températures ambiantes : -10°C à +80°C Températures de fluide : 0°C à +40°C

Lubrification: Non requise

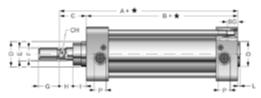
Fluide : Air filtré

Pression maxi de travail: 10 bar

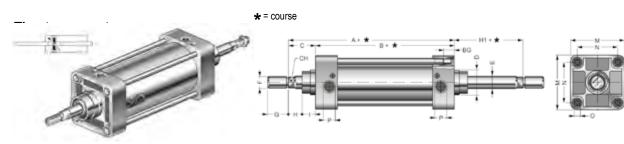
Les vérins avec tirants de la série XJC sont disponibles en diamètres de 32 à 200.

Ces cylindres sont fabriqués conformément aux normes ISO-VDMA et sont disponibles en double effet avec piston magnétique, dans un large éventail de courses standards.

Les tolérances sur les courses des vérins sont conformes à la norme ISO 15552.

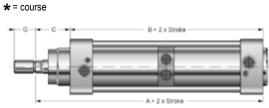

XJC Alésage (mm) Ø3232 Ø4040 Ø5050 Ø6363 Ø8080 Ø100100	VS Joint de tige Viton VV Tous joints Viton TN2 Multi-poussées en tandem(Ø160 - 200)	
Ø125125 Ø160160 Ø200200 Ø250250 Ø320320	SS Piston en acier inoxydable X5 Cr Ni	
Tige de piston-cylindre P		

								Cour	se sta	ndard	(mm)								Language
Alésage	25	50	80	100	125	160	200	250	300	350	400	450	500	600	700	800	900	1000	Longueur effective de l'amortisseur
										mm									i aiiioi lisseui
32	•	•	•	•	•	•	•	•	•	•	•	•	•						24
40	•	•	•	•	•	•	•	•	•	•	•	•	•						27
50	•	•	•	•	•	•	•	•	•	•	•	•	•						30
63	•	•	•	•	•	•	•	•	•	•	•	•	•						30
80	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38
125	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38
160	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45
200	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45
250		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45
320		•	•	•		•		•			•	•	•	•		•	•	•	45



Alésage	Α	В	С	ØD	ØE	ØF	G	Н		L	М	N	ØO	ØΡ	ØBG	СН
							mı	m								
32	120	94	26	30	12	M10X1.25	20	8	18	4	45	32.5	M6	G1/8	16	10
40	135	105	30	35	16	M12X1.25	24	8.5	21.5	4	54	38	M6	G1/4	16	13
50	143	106	37	40	20	M16X1.5	32	9	28	4	64	46.5	M8	G1/4	16	17
63	158	121	37	45	20	M16X1.5	32	8.5	28.5	4	75	56.5	M8	G3/8	16	27
80	174	128	46	45	25	M20X1.5	40	11.5	34.5	4	93	72	M10	G/8	18	21
100	189	138	51	55	25	M20X1.5	40	13	38	4	110	89	M10	G/1/2	18	21
125	225	160	65	60	30	M27X2	54	30	35	4	142	110	M12	G1/2	22	27
160	260	180	80	65	40	M36x2	72	35	45	5	180	140	M16	G3/4	22	36
200	275	180	95	75	40	M36x2	72	50	45	5	220	175	M16	G3/4	22	36
250	305	200	105	90	50	M42x2	84	30	75	8	270	220	M20	G1	25	46
320	340	220	120	110	63	M48x2	96	30	90	10	350	270	M24	G1	28	55

XJC ... / ... P Tige traversante

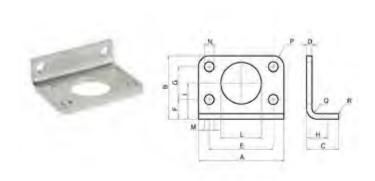


Alésage	Α	В	С	ØD	ØE	ØF	G	Н	H1		М	N	ØО	ØР	ØBG	СН
32	120	94	26	30	12	M10X1.25	20	8	26	18	45	32.5	M6	G1/8	16	10
40	135	105	30	35	16	M12X1.25	24	8.5	30	21.5	54	38	M6	G1/4	16	13
50	143	106	37	40	20	M16X1.5	32	9	37	28	64	46.5	M8	G1/4	16	17
63	158	121	37	45	20	M16X1.5	32	8.5	37	28.5	75	56.5	M8	G3/8	16	27
80	174	128	46	45	25	M20X1.5	40	11.5	46	34.5	93	72	M10	G/8	18	21
100	189	138	51	55	25	M20X1.5	40	13	51	38	110	89	M10	G/1/2	18	21
125	225	160	65	60	30	M27X2	54	30	65	35	142	110	M12	G1/2	22	27
160	260	180	80	65	40	M36 × 2	72	35	80	45	180	140	M16	G3/4	22	36
200	275	180	95	75	40	M36 × 2	72	50	95	45	220	175	M16	G3/4	22	36
250	305	200	105	90	50	M42 × 2	84	30	105	75	270	220	M20	G1	30	46
320	340	220	120	110	63	M48 × 2	96	30	120	90	345	270	M24	G1	30	55

XJC ... TN2 ...

Vérin double multi-poussées

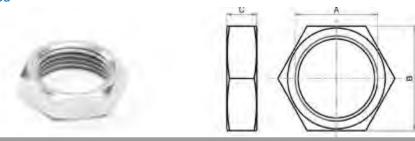
Ø	Α	В	С	G
160	356	276	80	72
200	395	300	95	72
250	305	200	105	84
320	340	220	120	96



Chapes Verins Séries NWT - NSK - XJC

Matériaux : Acier zingué

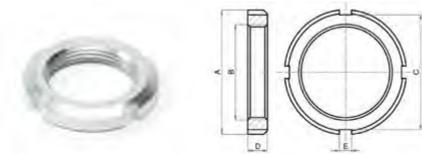
MPBI/..



		Dimensions	(mm)	
COD.	47.MPBI.032	47.MPBI.040	47.MPBI.050	47.MPBI.063
\emptyset mm	32	40	50	63
Α	66	80	90	96
В	49	58	70	80
С	21	30	30	30
D	4	5	6	6
E	52	60	70	76
F	14	18	20	20
G	28	30	40	50
Н	14	20	20	20
I	28	33	40	45
L	30	38	45	45
M	7	9	9	9
N	7	9	9	9
Р	7	10	10	10
Q	4	5	6	6
R	2	2	2	2

DAT/.. Ecrou

Matériau : Acier zingué



		Dimensions	
COD.	47.DAT.008	47.DAT.012	47.DAT.020
Α	M12x1,25	M16x1,5	M22x1,5
В	19	22	27
С	7	5	8

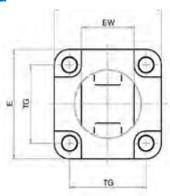
Matériau : Acier zingué

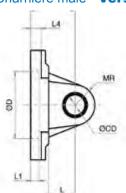
GHI/.. Ecrou rainuré

		Dimensions	
COD.	47.GHI.032	47.GHI.040	47.GHI.050
Ø mm	32	40	50 - 63
Α	45	50	58
В	M30x1,5	M38x1,5	M45x1,5
С	40	46	52
D	7	8	9
E	5	5	6

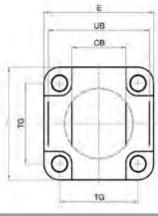
Matériau : Acier zingué

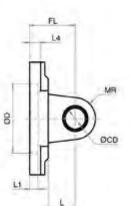
	Dimensions										
COD.	47.DA.06100	47.DA.08125	47.DA.10125	47.DA.12125	47.DA.16150	47.DA.20150	47.DA.27200	47.DA.36200	47.DA.42200	47.DA.48200	
Α	M6	M8	M10x1,25	M12x1,25	M16x1,5	M20x1,5	M27x2	M36x2	M42x2	M48x2	
В	10	13	17	19	24	30	41	55	65	75	
С	4	5	6	7	8	9	12	14	16	18	


Matériau : Acier zingué



CMI/..
Charnière mâle - Version alu

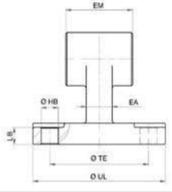

				Dimen	sions (mm)				
COD.	47.CMI.032	47.CMI.040	47.CMI.050	47.CMI.063	47.CMI.080	47.CMI.100	47.CMI.125	47.CMI.160	47.CMI.200
Ø	32	40	50	63	80	100	125	160	200
EW	26	28	32	40	50	60	70	90	90
E	45	52	65	75	93	110	134	180	220
FL	22	25	27	32	36	41	50	55	60
L1	5	5	5	5	5	5	7	7	7
L4	5,5	5,5	6,5	6,5	10	10	10	10	11
L	13	16	16	21	22	27	30	35	35
MR	10	12	12	16	16	20	25	25	25
Ø CD	10	12	12	16	16	20	25	30	30
ØD	30	35	40	45	45	55	60	65	75
TG	32,5	38	46,5	56,5	72	89	110	140	175

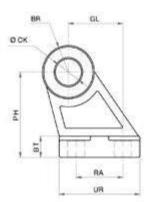

CFI/.. CFIA/..

Charnière femelle - Version alu

Charnière femelle - Version acier

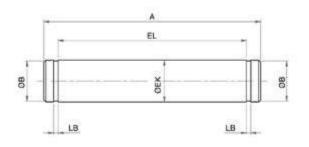
				Dimen	isions (mm)				
COD.	47.CFI.032	47.CFI.040	47.CFI.050	47.CFI.063	47.CFI.080	47.CFI.100	47.CFI.125	47.CFI.160	47.CFI.200
Ø	32	40	50	63	80	100	125	160	200
СВ	26	28	32	40	50	60	70	90	90
E	45	52	65	75	93	110	134	180	220
FL	22	25	27	32	36	41	50	55	60
L1	5	5	5	5	5	5	7	7	7
L4	5,5	5,5	6,5	6,5	10	10	10	10	11
L	13	16	16	21	22	27	30	35	35
MR	10	12	12	16	16	20	25	25	25
Ø CD	10	12	12	16	16	20	25	30	30
ØD	30	35	40	45	45	55	60	65	75
TG	32,5	38	46,5	56,5	72	89	110	140	175
UB	45	52	60	70	90	110	130	170	170
	•		•	•			-		-




ASI/.. ASIA/..

Charnière carrée - **Version alu**

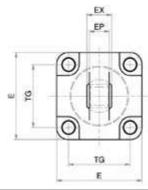
Charnière carrée - **Version acier**

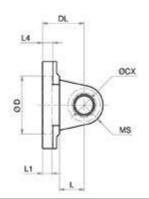

				Dimen	sions (mm)				
COD.	47.ASI.032	47.ASI.040	47.ASI.050	47.ASI.063	47.ASI.080	47.ASI.100	47.ASI.125	47.ASI.160	47.ASI.200
Ø	32	40	50	63	80	100	125	160	200
BR	10	11	13	15	15	19	22,5	31,5	31,5
BT	8	10	12	14	14	17	20	25	30
CK	10	12	12	16	16	20	25	30	30
EA	10	15	16	16	20	20	30	36	40
EM	26	28	32	40	50	60	70	90	90
GL	21	24	33	37	47	55	70	97	105
LB	6,4	8,4	10,4	12,4	11,5	14,5	16,8	21	26
Ø HB	6,6	6,6	9	9	11	11	14	14	18
PH	32	36	45	50	63	71	90	115	135
RA	18	22	30	35	40	50	60	88	90
TE	38	41	50	52	66	76	94	118	122
UL	51	54	65	67	86	96	124	156	162
UR	31	35	45	50	60	70	90	126	130

PCF/..

Tige pour charnière

	Dimensions (mm)										
COD.	47.PCF.032	47.PCF.040	47.PCF.050	47.PCF.063	47.PCF.080	47.PCF.100	47.PCF.125	47.PCF.160.200			
Ø	32	40	50	63	80	100	125	160-200			
Α	53	60	68	78	98	118	139	180			
EL	46	53	61	71	91	111	132	172			
LB	1,1	1,1	1,1	1,1	1,1	1,3	1,3	1,6			
ØВ	9,6	11,5	11,5	15,2	15,2	19	23,9	28,6			
Ø EK	10	12	12	16	16	20	25	30			

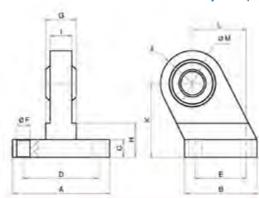

CMSI./..


CMSIA./..

Charnière mâle avec joint sphérique - Version alu

Charnière mâle avec joint sphérique - Version acier

	Dimensions (mm)										
COD.	47.CMSI.032	47.CMSI.040	47.CMSI.050	47.CMSI.063	47.CMSI.080	47.CMSI.100	47.CMSI.125	47.CMSI.160	47.CMSI.200		
Ø	32	40	50	63	80	100	125	160	200		
DL	22	25	27	32	36	41	50	55	60		
EP	10,5	12	15	15	18	18	25	30	30		
EX	14	16	21	21	25	25	37	43	43		
E	45	52	65	75	95	115	140	195	238		
L1	7	7	7	7	9	9	9	7	7		
L4	5,5	5,5	6,5	6,5	10	10	10	10	11		
L	12	15	15	20	20	25	30	35	35		
MS	16	18	21	23	28	30	40	44	47		
Ø CX	10	12	16	16	20	20	30	35	35		
ØD	30	35	40	45	45	55	60	65	75		
TG	32,5	38	46,5	56,5	72	89	110	140	175		

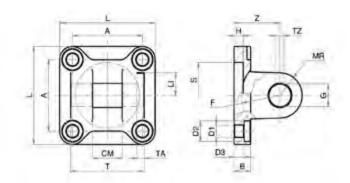

ASSI./..

ASSIA./..

Charnière ronde avec joint sphérique - **Version alu** Ch

Charnière ronde avec joint sphérique - Version acier

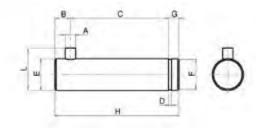
Dimensions (mm)										
COD.	47.ASSI.032	47.ASSI.040	47.ASSI.050	47.ASSI.063	47.ASSI.080	47.ASSI.100				
Ø	32	40	50	63	80	100				
Α	51	54	65	67	86	96				
В	31	35	45	50	60	70				
С	10	10	12	12	14	15				
D	38	41	50	52	66	76				
E	18	22	30	35	40	50				
G	14	16	21	21	25	25				
Н	16	16	21	23	32	33				
- 1	10,5	12	15	15	18	18				
J	15	17	20	22	27	29				
K	32	36	45	50	63	71				
L	21	24	33	37	47	55				
ØF	6,6	6,6	9	9	11	11				
ØΜ	10	12	16	16	20	20				



CFSI./.. CFSIA./..

Charnière femelle étroite - **Version alu**

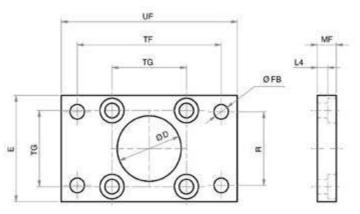
Charnière femelle étroite - Version acier


Matériau : Acier zingué

				Dimen	isions (mm)				
COD.	47.CFSI.032	47.CFSI.040	47.CFSI.050	47.CFSI.063	47.CFSI.080	47.CFSI.100	47.CFSI.125	47.CFSI.160	47.CFSI.200
Ø	32	40	50	63	80	100	125	160	200
Α	32,5	38	46,5	56,5	72	89	110	140	175
В	9	9	1	1	14	14	20	20	25
СМ	14	16	21	21	25	25	37	43	43
D1	6,6	6,6	9	9	11	11	14	18	18
D2	11	11	15	15	18	18	20	26	26
D3	5,5	5,5	6,5	6,5	10	10	10	10	11
F min.	17	20	22	25	30	32	42	46	49
G	10	12	16	16	20	20	30	35	35
Н	5	5	5	5	5	5	7	7	7
LI	11,5	12	14	14	16	16	24	26,5	26,5
L	45	52	65	75	95	115	140	180	220
MR	10	12	14	18	20	22	25	30	30
S	30	35	40	45	45	55	60	65	75
TA	3	4	4	4	4	4	6	6	6
TZ	3,3	4,3	4,3	4,3	4,3	6,3	6,3	6,3	6,3
Т	34	40	45	51	65	75	97	122	122
Z	22	25	27	32	36	41	50	55	60

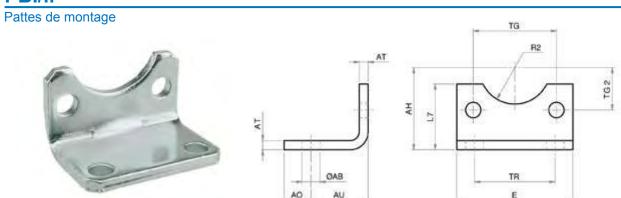
PCFS./..

Cheville pour charnière étroite


	Dimensions (mm)									
COD.	47.PCFS.032	47.PCFS.040	47.PCFS.050	47.PCFS.063	47.PCFS.080	47.PCFS.100	47.PCFS.125	47.PCFS.160	47.PCFS.200	
Ø Cil	32	40	50	63	80	100	125	160	200	
Α	3	4	4	4	4	4	6	6	6	
В	4,5	6	6	6	6	6	9	9	9	
D	1,1	1,1	1,1	1,1	1,3	1,3	1,6	1,6	1,6	
E	10	12	16	16	20	20	30	35	35	
F	9,6	11,5	15,2	15,2	19	19	28,6	33	33	
G	4	4	5	5	6	6	7	7	7	
Н	41	48	54	60	75	85	110	135	135	
L	14	16	20	20	24	24	36	41	41	

Matériau : Acier zingué

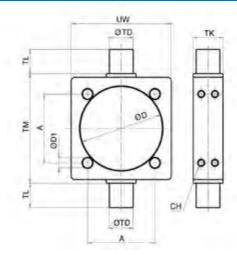
FI/.. Bride



Matériau : Acier zingué

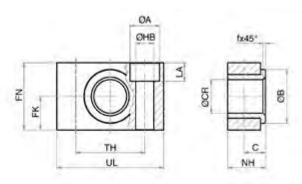
				Dimen	sions (mm)				
COD.	47.FI.032	47.FI.040	47.FI.050	47.FI.063	47.FI.080	47.FI.100	47.FI.125	47.FI.160	47.FI.200
Ø	32	40	50	63	80	100	125	160	200
E	45	52	65	75	95	115	140	180	220
L4	5	5	6,5	6,5	9	9	10,5	9,5	12,5
MF	10	10	12	12	16	16	20	20	25
ØD	30	35	40	45	45	55	60	65	75
Ø FB	7	9	9	9	12	14	16	18	22
R	32	36	45	50	63	75	90	115	135
TF	64	72	90	100	126	150	180	230	270
TG	32,5	38	46,5	56,5	72	89	110	140	175
UF	80	90	110	120	150	170	205	260	300

PBI/..


Matériau	:	Acier	zingué	
----------	---	-------	--------	--

	Dimensions (mm)										
COD.	47.PBI.032	47.PBI.040	47.PBI.050	47.PBI.063	47.PBI.080	47.PBI.100	47.PBI.125	47.PBI.160	47.PBI.200		
Ø	32	40	50	63	80	100	125	160	200		
AH	32	36	45	50	63	71	90	115	135		
AO	11	8	15	13	14	16	25	15	30		
AT	4	4	5	5	6	6	8	10	12		
AU	24	28	32	32	41	41	45	60	70		
E	45	52	65	75	95	115	140	180	220		
L7	30	30	36	35	47	53	70	100	109		
AB	7	10	10	10	12	14,5	16,5	18,5	24		
R2	15	17,5	20	22,5	22,5	27,5	30	32,5	37,5		
TG2	16.25	19	23,25	28,25	36	44,5	55	70	87,5		
TG	32,5	38	46,5	56,5	72	89	110	140	175		
TR	32	36	45	50	63	75	90	115	135		

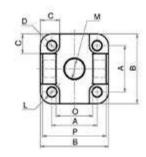
CICT/.. Fiche intermédiaire pour tiges de retenue

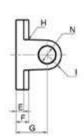

Matériau : Acier zingué

			Dimensio	ons (mm)			
COD.	47.CICT.032	47.CICT.040	47.CICT.050	47.CICT.063	47.CICT.080	47.CICT.100	47.CICT.125
Ø	32	40	50	63	80	100	125
Α	32,5	38	46,5	56,5	72	89	110
СН	2,5	2,5	3	3	4	4	5
Ø D1	6,25	6,25	8,25	8,25	10,25	10,25	12,25
ØD	37	46	56	69	87	107	133
Ø TD	12	16	16	20	20	25	25
TK	15	20	20	25	25	30	32
TL	12	16	16	20	20	25	25
TM	50	63	75	90	110	132	160
UW	46	59	69	84	102	125	155

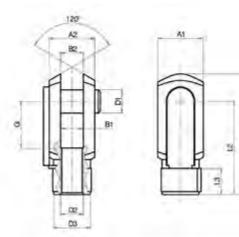
SCI/..

Support pour fiche intermédiaire


Matériau : Aluminium et bronze


		Dimensio	ons (mm)		
COD.	47.SCI.032	47.SCI.040.050	47.SCI.063.080	47.SCI.100.125	47.SCI.160.200
Ø	32	40-50	63-80	100-125	160-200
С	10,5	12	13	16	22,5
FK	15	18	20	25	30
FN	30	36	40	50	60
f	1	1,6	1,6	2	2,5
LA	7	9	11	13	17
NH	18	21	23	28,5	40
ØA	11	15	18	20	26
ØВ	22	28	32	39	45
Ø CR	12	16	20	25	32
Ø HB	6,6	9	11	14	18
TH	32	36	42	50	60
UL	46	55	65	75	92

CFU/.. Charnière femelle UNITOP

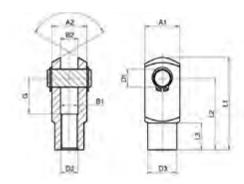

Matériau : Aluminium

			Dimensions (mr	n)		
COD.	47.CFU.032	47.CFU.040	47.CFU.050	47.CFU.063	47.CFU.080	47.CFU.100
Ø	032	040	050	063	080	100
А3	9	9	11	11	13	15
В3	13	16	16	21	23	26
B4	22	25	27	32	36	41
ı	32	42	50	62	82	103
Ø E2	10	12	12	16	16	20
R1	10	12,5	12,5	15	15	20
T2	26	28	32	40	50	60
Т3	45	52	60	70	90	110
T	48	58	66	83	102	123

FC/..

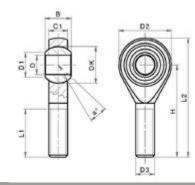
Chape taraudée avec axe verrouillable

Matériau : Acier zingué


	J								
Dimensions									
COD.	47.FC.04070	47.FC.06100	47.FC.08125	47.FC.10125	47.FC.12125	47.FC.16150	47.FC.20150		
A 1	8	12	16	20	24	32	40		
A2	8	12	16	20	24	32	40		
B1	4	6	8	10	12	16	20		
B2	4	6	8	10	12	16	20		
G	8	12	16	20	24	32	40		
L1	21	31	42	52	62	83	105		
L2	16	24	32	40	48	64	80		
L3	6	9	12	15	18	24	30		
Ø D1	4	6	8	10	12	16	20		
Ø D2	M4x0,7	M6x1	M8x1,25	M10x1,25	M12x1,25	M16x1,5	M20x1,5		
Ø D3	8	10	14	18	20	26	34		

FP/..

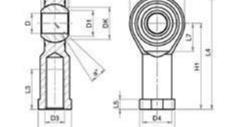
Chape taraudée avec axe


Matériau : Acier zingué

natoriaa . 7 toic	or Emigao								
Dimensions									
COD.	47.FP.06100	47.FP.08125	47.FP.10125	47.FP.12125	47.FP.16150	47.FP.20150	47.FP.27200	47.FP.36200	47.FP.42200
A 1	12	16	20	24	32	40	55	70	85
A2	12	16	20	24	32	40	55	70	85
B1	6	8	10	12	16	20	30	35	40
B2	6	8	10	12	16	20	30	35	40
G	12	16	20	24	32	40	54	72	84
L1	31	42	52	62	83	105	148	188	232
L2	24	32	40	48	64	80	110	144	168
L3	9	12	15	18	24	30	38	40	63,5
Ø D1	6	8	10	12	16	20	30	35	42
Ø D2	M6x1	M8x1,25	M10x1,25	M12x1,25	M16x1,5	M20x1,5	M27x2	M36x2	M42x2
Ø D3	10	14	18	20	26	34	48	60	70

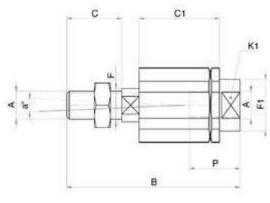
SSFE/..

Chape à rotule


Matériau : corps en acier zingué, acier, bronze et PTFE

Dimensions									
COD.	47.SSFE.06100	47.SSFE.08125	47.SSFE.10150	47.SSFE.12175	47.SSFE.16200	47.SSFE.20250			
a°	13	14	13	13	15	14			
В	9	12	14	16	21	25			
C1	6,75	9	10,5	12	15	19			
D1	8,9	10,4	12,9	15,4	19,3	24,3			
D2	20	24	28	32	42	50			
D3	M6	M8	M10	M12	M16	M20			
DK	12,7	15,87	19,05	22,22	28,57	34,52			
D	6	8	10	12	16	20			
Н	36	42	48	54	66	78			
L1	21	25	28	32	37	45			
L2	46	54	62	70	87	103			

SSFI/.. Chape à rotule (filetage intérieur)

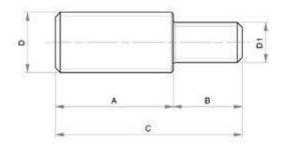

Matériau : corps en acier zingué, acier, bronze et PTFE

					Dimer	nsions					
COD.	47.SSFI.04070	47.SSFI.06100	47.SSFI.08125	47.SSFI.10125	47.SSFI.10150	47.SSFI.12125	47.SSFI.16150	47.SSFI.20150	47.SSFI.27200	47.SSFI.36200	47.SSFI.42200
a°	13	13	14	13	13	13	15	14	17	16	16
В	8	9	12	14	14	16	21	25	37	43	49
C1	6	6,75	9	10,5	10,5	12	15	18	25	28	33
D1	7,7	8,9	10,4	12,9	12,9	15,4	19,3	24,3	34,8	37,7	45,1
D2	18	20	24	28	28	32	42	50	70	80	91
D3	M4	M6	M8	M10x1,25	M10x1,5	M12x1,25	M16x1,5	M20x1,5	M27x2	M36x2	M42x2
D4	9	10	12,5	15	15	17,5	22	27,5	40	46	53
D5	11	13	16	19	19	22	27	34	50	58	65
DK	11,11	12,7	15,87	19,05	19,05	22,22	28,57	34,92	50,8	57,15	66,6
D	5	6	8	10	10	12	16	20	30	35	40
H1	27	30	36	43	43	50	64	77	110	125	142
L3	10	12	16	20	20	22	28	33	51	56	60
L4	36	40	48	57	57	66	85	102	145	165	187
L5	4	5	5	6,5	6,5	6,5	8	10	15	17	19
L7	10	11	13	15	15	17	23	27	36	41	45
W	9	11	14	17	17	19	22	30	41	50	55

SA/..

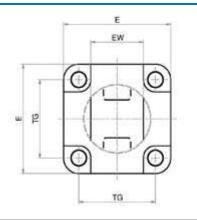
Raccord auto-aligné

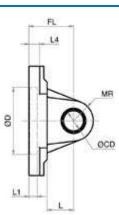
Matériau : Acier zingué


		Di	mensions		
COD.	47.SA.08125	47.SA.10125	47.SA.12125	47.SA.16150	47.SA.20150
Α	M8x1,25	M10x1,25	M12x1,25	M16x1,5	M20x1,5
a°	10	10	10	10	10
В	57	71	75	103	119
C1	28,5	35	35	54	54
С	20	20	24	32	40
K1	11	19	19	30	30
K2	17	30	30	41	41
K	7	12	12	20	20
Ø F1	12,5	22	22	32	32
ØF	8	14	14	22	22
ØН	19	32	32	45	45
P	20	20	20	32	40

NP/..

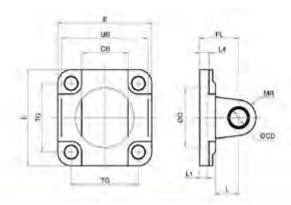
Manchons


Matériau : Acier


	Dimensions											
COD.	47.NP.0603	47.NP.0604	47.NP.0805	47.NP.1006	47.NP.1208	47.NP.16.8	47.NP.1610	47.NP.2012				
Α	16	15	20	22	24	32	32	40				
В	6,5	8	10	12	14	14	15	20				
С	22,5	23	30	34	38	46	47	60				
С	22,5	23	30	34	38	46	47	60				
D1	M3	M4	M5	M6	M8	M8	M10	M12				

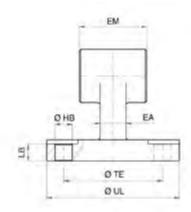
CMI/ X

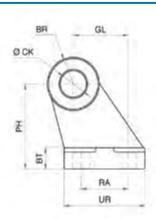
Charnière mâle INOX


			Dimensio	ons (mm)			
COD.	47.CMIX.032	47.CMIX.040	47.CMIX.050	47.CMIX.063	47.CMIX.080	47.CMIX.100	47.CMIX.125
Ø	32	40	50	63	80	100	125
E	45	52	65	75	93	110	134
EW	26	28	32	40	50	60	70
TG	32,5	38	46,5	56,5	72	89	110
FL	22	25	27	32	36	41	50
L1	5	5	5	5	5	5	7
L	13	16	16	21	22	27	30
L4	5,5	5,5	6,5	6,5	10	10	10
Ø D	30	35	40	45	45	55	60
Ø CD	10	12	12	16	16	20	25
MR	10	12	12	16	16	20	25

CFI/ X

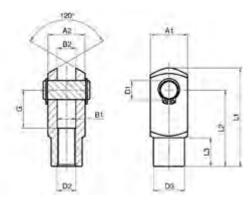
Charnière femelle INOX




			Dimensio	ons (mm)			
COD.	47.CFIX.032	47.CFIX.040	47.CFIX.050	47.CFIX.063	47.CFIX.080	47.CFIX.100	47.CFIX.125
Ø	32	40	50	63	80	100	125
СВ	26	28	32	40	50	60	70
E	45	52	65	75	93	110	134
FL	22	25	27	32	36	41	50
L1	5	5	5	5	5	5	7
L4	5,5	5,5	6,5	6,5	10	10	10
L	13	16	16	21	22	27	30
MR	10	12	12	16	16	20	25
Ø CD	10	12	12	16	16	20	25
ØD	30	35	40	45	45	55	60
TG	32,5	38	46,5	56,5	72	89	110
UB	45	52	60	70	90	110	130

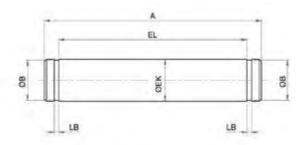
ASI/ X

Charnière carrée INOX


			Dimensio	ons (mm)			
COD.	47.ASIX.032	47.ASIX.040	47.ASIX.050	47.ASIX.050	47.ASIX.080	47.ASIX.100	47.ASIX.125
Ø	32	40	50	50	80	100	125
BR	10	11	13	13	15	19	22,5
BT	8	10	12	12	14	17	20
CK	10	12	12	12	16	20	25
EA	10	15	16	16	20	20	30
EM	26	28	32	32	50	60	70
GL	21	24	33	33	47	55	70
LB	6,4	8,4	10,4	10,4	11,5	14,5	16,8
Ø HB	6,6	6,6	9	9	11	11	14
PH	32	36	45	45	63	71	90
RA	18	22	30	30	40	50	60
TE	38	41	50	50	66	76	94
UL	51	54	65	65	86	96	124
UR	31	35	45	45	60	70	90

FP/ X

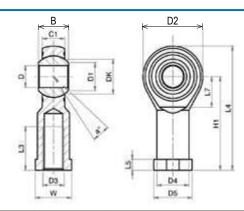
Chape taraudée avec axe INOX



				Dimension	S			
COD.	47.FPX.06100	47.FPX.08125	47.FPX.10125	47.FPX.12125	47.FPX.16150	47.FPX.20150	47.FPX.27200	47.FPX.36200
A1	12	16	20	24	32	40	55	70
A2	12	16	20	24	32	40	55	70
B1	6	8	10	12	16	20	30	35
B2	6	8	10	12	16	20	30	35
G	12	16	20	24	32	40	54	72
L1	31	42	52	62	83	105	148	188
L2	24	32	40	48	64	80	110	144
L3	9	12	15	18	24	30	38	40
Ø D2	M6x1	M8x1,25	M10x1,25	M12x1,25	M16x1,5	M20x1,5	M27x2	M36x2
Ø D3	10	14	18	20	26	34	48	60
Ø D1	6	8	10	12	16	20	30	35

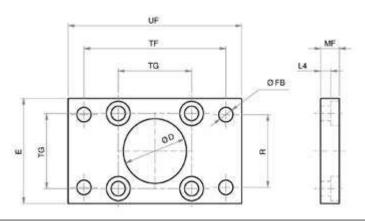
PCF/ X

Tige pour charnière INOX



	Dimensions (mm)										
COD.	47.PCFX.032	47.PCFX.040	47.PCFX.050	47.PCFX.063	47.PCFX.080	47.PCFX.100	47.PCFX.125				
Ø	32	40	50	63	80	100	125				
Α	53	60	68	78	98	118	139				
ØВ	9,6	11,5	11,5	15,2	15,2	19	23,9				
EL	46	53	61	71	91	111	132				
Ø EK	10	12	12	16	16	20	25				
LB	1,1	1,1	1,1	1,1	1,1	1,3	1,3				

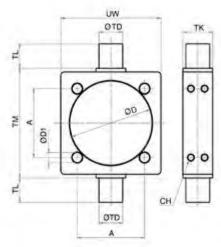
SSFI/ X Chape à rotule INOX



					Dimensions				
COD.	47.SS- FI.04x0,7X	47.SS- FI.06x1X	47.SS- FI.08x1,25X	47.SS- Fl.10x1,25X	47.SS- Fl.12x1,25X	47.SS- Fl.16x1,5X	47.SS- Fl.20x1,5X	47.SSFI.27x2X	47.SSFI.36x2X
a°	13	13	14	13	13	15	14	17	16
В	8	9	12	14	16	21	25	37	43
C1	6	6,75	9	10,5	12	15	18	25	28
D1	7,7	8,9	10,4	12,9	15,4	19,3	24,3	34,8	37,7
D2	18	20	24	28	32	42	50	70	80
D3	M4	M6	M8	M10x1,25	M12x1,25	M16x1,5	M20x1,5	M27x2	M36x2
D4	9	10	12,5	15	17,5	22	27,5	40	46
D5	11	13	16	19	22	27	34	50	58
DK	11,11	12,7	15,87	19,05	22,22	28,57	34,92	50,8	57,15
D	5	6	8	10	12	16	20	30	35
H1	27	30	36	43	50	64	77	110	125
L3	10	12	16	20	22	28	33	51	56
L4	36	40	48	57	66	85	102	145	165
L5	4	5	5	6,5	6,5	8	10	15	17
L7	10	11	13	15	17	23	27	36	41
W	9	11	14	17	19	22	30	41	50

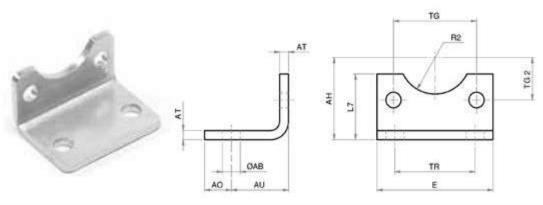
FI/ X

Bride INOX


	Dimensions (mm)											
COD.	47.FIX.032	47.FIX.040	47.FIX.050	47.FIX.063	47.FIX.080	47.FIX.100	47.FIX.125					
Ø	32	40	50	63	80	100	125					
E	45	52	65	75	95	115	140					
L4	5	5	6,5	6,5	9	9	10,5					
MF	10	10	12	12	16	16	20					
ØD	30	35	40	45	45	55	60					
Ø FB	7	9	9	9	12	14	16					
R	32	36	45	50	63	75	90					
TF	64	72	90	100	126	150	180					
TG	32,5	38	46,5	56,5	72	89	110					
UF	80	90	110	120	150	170	205					

CICT/ X

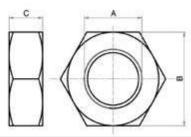
Fiche intermédiaire pour tiges de retenue INOX



			Dime	nsions (mm)			
COD.	47.CICTX.032	47.CICTX.040	47.CICTX.050	47.CICTX.063	47.CICTX.080	47.CICTX.100	47.CICTX.125
Ø	32	40	50	63	80	100	125
Α	32,5	38	46,5	56,5	72	89	110
СН	2,5	2,5	3	3	4	4	5
Ø D1	6,25	6,25	8,25	8,25	10,25	10,25	12,25
ØD	37	46	56	69	87	107	133
Ø TD	12	16	16	20	20	25	25
TK	15	20	20	25	25	30	32
TL	12	16	16	20	20	25	25
TM	50	63	75	90	110	132	160
UW	46	59	69	84	102	125	155

PBI/ X

Pattes de montage INOX



			Dimensio	ons (mm)			
COD.	47.FPBX.032	47.FPBX.040	47.FPBX.050	47.FPBX.063	47.FPBX.080	47.FPBX.100	47.FPBX.125
Ø	32	40	50	63	80	100	125
AH	32	36	45	50	63	71	90
AO	11	8	15	13	14	16	25
AT	4	4	5	5	6	6	8
AU	24	28	32	32	41	41	45
E	45	52	65	75	95	115	140
L7	30	30	36	35	47	53	70
Ø AB	7	10	10	10	12	14,5	16,5
R2	15	17,5	20	22,5	22,5	27,5	30
TG2	16.25	19	23,25	28,25	36	44,5	55
TG	32,5	38	46,5	56,5	72	89	110
TR	32	36	45	50	63	75	90

DA/ X Écrou de tige INOX

				Dimensio	ns			
COD.	47.DAX.06100	47.DAX.08125	47.DAX.10125	47.DAX.12125	47.DAX.16150	47.DAX.20150	47.DAX.27200	47.DAX.36200
Α	M6	M8	M10x1,25	M12x1,25	M16x1,5	M20x1,5	M27x2	M36x2
В	10	13	17	19	24	30	41	55
С	4	5	6	7	8	9	12	14

Micro-vérin simple effet ressort avant

Alésage (mm): Ø6 6 Ø10 10 Ø16 16 Course (mm): 5, 10, 15

Vérins pneumatiques cartouche

Série CZ

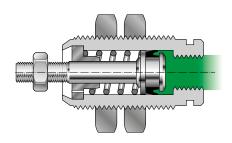
Tige : Inox chromé **Douille** : Laiton nickelé

Piston: Acier inox X10 Cr Ni S 18-09

Corps: Laiton nickelé

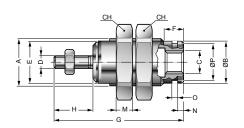
Joint : NBR Ressort : Acier

Température ambiante : -20°C à +80°C Température de fluide : 0°C à +40°C


Lubrification: Non requise

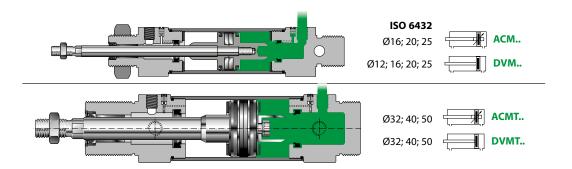
Fluide : Air filtré

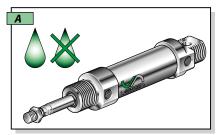
Pression de travail: 2-7 bar

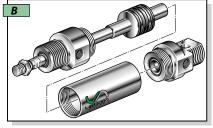

		Force	ressort
Alésage	Poussée (6 bar)	début	fin
		de course	de course
6	12	1,2	3,8
10	35	2,7	7,3
16	102	3,3	6,6

Alfaana		Poids (g)	
Alésage	5	10	15
6	10	12,8	15
10	27	32	36
16	70	78	87

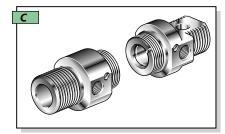
CZ ../...

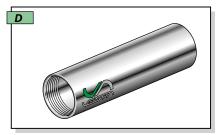


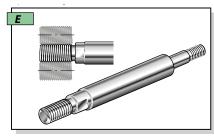

Alésag	e A	В	С	D	Е	F	5	G 10	15	Н	М	СН	N	0	Р
6	M10X1	8,5	M5	М3	9	5	27,5	34,5	41,5	8	3	14	1,5	1,2	7,3
10	M15X1,5	12	M5	M4	14	7	33,5	40	47	10,5	4	19	1,5	1,7	9,8
16	M22X1,5	19	M5	M5	20	6	40	45	50	13	5	27	2	1,7	16.8

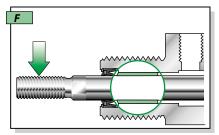


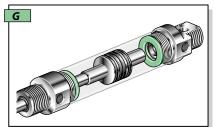
Vérins pneumatiques ISO 6432 Séries ACM-DVM-DRM-ACMT-DVMT

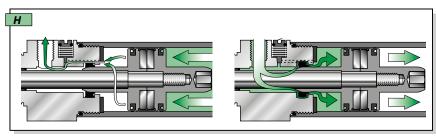



Sans lubrification


La tête de vis permet le contrôle direct des vérins


Flasque en alliage aluminium léger


Tube en aluminium anodisé, taraudé


Tige en acier chromé

Auto-lubrification des douilles en acier cuivré avec dépôt en Teflon

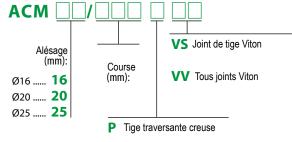
Amortisseur mécanique des deux côtés pour série DVM et DVMT

Amortisseur pneumatique progressif et efficace pour série ACM et ACMT

Vérin pneumatique avec piston magnétique amortisseur pneumatique et contrôle micrométrique.

Vérins pneumatiques ISO 6432 Série ACM

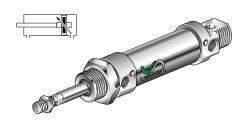
Flasque : Aluminium anodisé Tige : Acier inox X5CrNi 1810 roulé

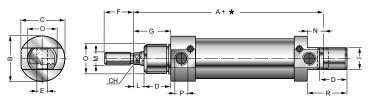

Corps : Aluminium anodisé
Joint : NBR

Amortisseur : Réglage pneumatique Température ambiante : -10°C à +80°C Température de fluide : 0°C à +40°C

Lubrification: Non requise

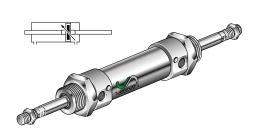
Fluide : Air filtré


Pression maxi de travail : 10 bar


Course standard Alésage 10 25 50 80 100 125 160 200 250 300 350 400 450 500											Longueur effective de				
	10	25	50	80	100	125	160	200 mr		300	350	400	450	500	l'amortisseur
40															0.4
16	•	•	•	•	•	•	•	•	•	•					24
20	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
25	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30

ACM .. /...

Simple tige


* : course


Alésage	Α	ØВ	С	СН	D	ØΕ	F	G	П	L	ØM	N	ØΟ	ØΡ	R
16	82	22	21.2	5	15	6		mm 22	12	7	M6x1	9	M16x1.5	M5	22
20		28	,-		19						M8x1,25		- ,-		
25	104	34	32,5	8	20	8	22	28	16	8	M10x1,25	12	M22x1,5	G1/8	30

ACM .. /...P

Tige traversante

* : course

Alésage	A	ØВ	С	СН	D	F mm	G	L	ØM	ØО	ØР
16	56	22	21,2	5	15	16	22	7	M6x1	M16x1,5	M5
20	68	28	26,2	7	19	20	24	5	M8x1,25	M22x1,5	G1/8
25	69	34	32,5	8	20	22	28	8	M10x1,25	M22x1,5	G1/8

Vérin pneumatique avec piston magnétique amortisseur mécanique des deux côtés.

Vérins pneumatiques ISO 6432

Série DVM - DRM

Flasque : Aluminium anodisé Tige: Acier inox X5CrNi 1810 roulé Corps: Aluminium anodisé

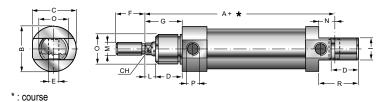
Joint : NBR

Amortisseur : Réglage pneumatique Température ambiante : -10°C à +80°C Température de fluide : 0°C à +40°C

Lubrification: Non requise

Fluide : Air filtré

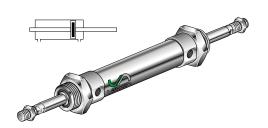
Pression maxi de travail : 10 bar

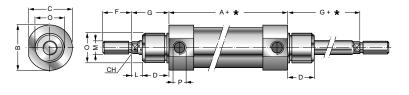

DVM _	╚	
		VS Joint de tige Viton
Alésage (mm):	Course (mm):	VV Tous joints Viton
Ø12 12 Ø16 16	(11111).	
Ø20 20	P Tigo	e de piston-cylindre
Ø25 25	SEA Res	ssort avant simple effet

SEP Ressort arrière simple effet

					Cou	ırse S	Stan	dard						
Alésage	10	25	50	80	100	125	160	200	250	300	350	400	450	500
						m	m							
12	•	•	•	•	•	•	•							
16	•	•	•	•	•	•	•	•	•	•				
20	•	•	•	•	•	•	•	•	•	•	•	•	•	•
25	•	•	•	•	•	•	•	•	•	•	•	•	•	•

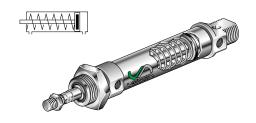
DVM .. /... Simple tige

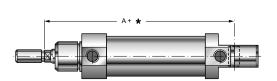



Alésage	Α	ØВ	С	СН	D	ØE	F	G	1	L	ØM	N	ØО	ØΡ	R
							n	ım							
12	75	18	17,2	5	15	6	16	22	12	7	M6x1	9	M16x1,5	M5	22
16	82			5	15	6		22	12	7	M6x1		M16x1,5		22
20 25	95		26,2		19	8	20		16	5	M8x1,25		M22x1,5		
25	104	34	32,5	8	20	8	22	28	16	8	M10x1,25	12	M22x1,5	G1/8	30

DVM .. /...

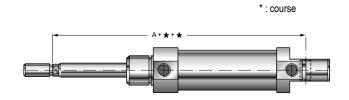
Tige traversante




Alésage	Α	ØВ	С	СН	D	F	G	L	ØM	ØΟ	ØΡ
						mm					
12	49,5	18	17,2	5	15	16	22	7	M6x1	M16x1,5	M5
16	56	22	21,2	5	15	16	22	7	M6x1	M16x1,5	M5
20	68	28	26,2	7	19	20	24	5	M8x1,25	M22x1,5	G1/8
25	69	34	32,5	8	20	22	28	8	M10x1,25	M22x1,5	G1/8

DVM .. /... **SEA**

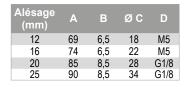
Simple effet ressort avant

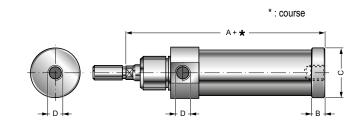

* : course

Alésage (mm)	A (mm)
12	75
16	82
20	95
25	104

DVM.. /... SEP

Simple effet ressort arrière



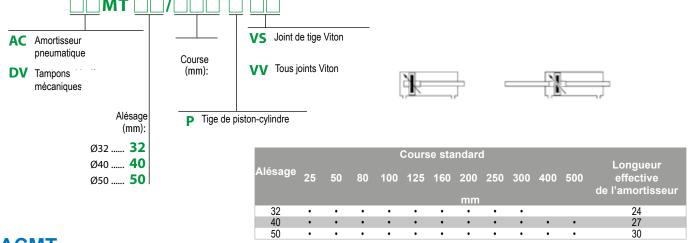

Alésage (mm)	A (mm)
12	75
16	82
20	95
25	104

Alésage	Ø	12	Ø 16		Ø	20	Ø	25	SEA	SEP
(mm)	min	max	min	max	min	max	min	max		
10	2,1	2,4	2,2	2,5	2,3	2,6	2,3	2,6	•	•
25	1,6	2,4	1,6	2,5	1,7	2,6	1,7	2,6	•	•
50	0,35	2,4	0,5	2,5	1	2,6	1	2,6	•	•

DRM .. /...

Vérins pneumatiques ISO 6432 Série ACMT - DVMT

Tige: Inox chromé

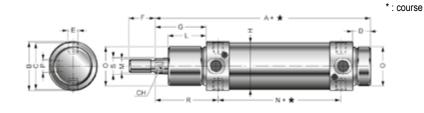

Piston: Acier inox X20 Cr13 roulé Corps: Aluminium anodisé Joint : Polyuréthane

Température ambiante : -10°C à +80°C Température de fluide : 0°C à +40°C

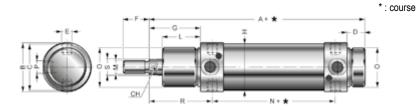
Lubrification: Non requise

Fluide : Air filtré

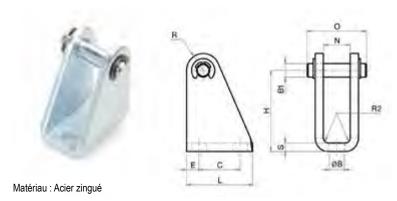
Pression maxi de travail: 10 bar



ACMT

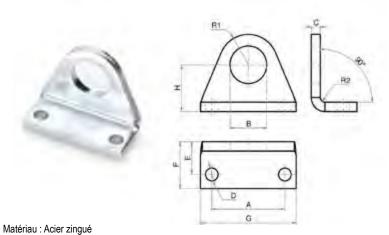

Α	lésage	Α	ØВ	С	СН	D	ØE	F	G	н	L	ØM	N	ØΟ	ØΡ	R	øs
								n	nm								
	32	148	38	36.8	10	14	M8×1	20	38	36	30	M10	78	M30×1.5	G1/8	47	12
	40	174	46	44.8	13	16	M10×1	24	45	45	35	M12	89	M38×1.5	G1/4	57	16
	50	188	58	55.8	17	18	M12×1.5	32	50	55	38	M16	96	M45×1.5	G1/4	62	20

DVMT

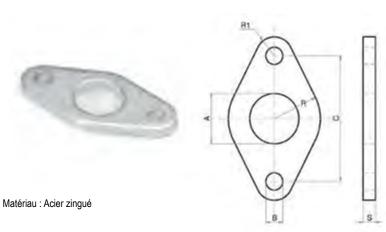

Alésage	Α	øв	С	СН	ØE	F	G mr		L	ØМ	N	øо	ØΡ	R	ø s
32	134	38	36.8	10	M8×1	20	38	36	30	M10	78	M30×1.5	G1/8	47	12
40	158	46	44.8	13	M10×1	24	45	45	35	M12	89	M38×1.5	G1/4	57	16
50	170	58	55.8	17	M12×15	32	50	55	38	M16	96	M45×1.5	G1/4	62	20

Accessoires de fixation

MCFI/..


Charnière arrière montage horizontal

	Dimen	sions (mm)	
COD.	47.MCFI.008	47.MCFI.012	47.MCFI.020
Ø mm	8 - 10	12 - 16	20 - 25
L	20	25	32
Н	24	27	30
B1	4	6	8
S	2,5	3	4
E	3,75	5	6
С	12,5	15	20
N	8,1	12,1	16,1
В	4,5	5,5	6,6
0	18	24	31
R	5	7	10
R2	1,5	1,5	2

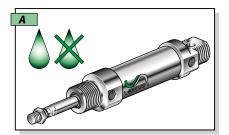

MPBI/..

Montage de pied

	Dimen	sions (mm)	
COD.	47.MPBI.008	47.MPBI.012	47.MPBI.020
Ø mm	8 - 10	12 - 16	20 - 25
Α	25	32	40
В	12	16,1	22,1
С	3	4	5
D	4,5	5,5	6,6
E	11	14	17
F	16	20	25
G	35	42	54
Н	16	20	25
R1	10	13	20
R2	1,5	2	2,5

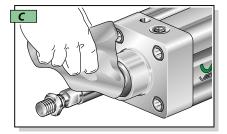
MFI /..
Bride de montage

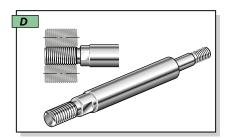
	Dimen	sions (mm)	
COD.	47.MFI.008	47.MFI.012	47.MFI.020
Ø mm	8 - 10	12 - 16	20 - 25
Α	12	16	22
В	4,5	5,5	6,5
С	30	40	50
R	11	15	20
R1	5	6	8
S	3	4	5

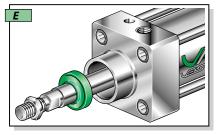


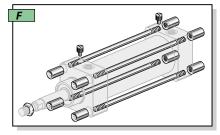
Vérins anti-corrosion Série DSM-DSA-XPN-XJS-XJSS

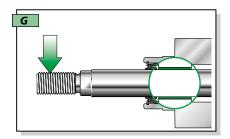
Les vérins anti-corrosion DSM, DSA, XPN, XJS et XJSS sont destinés à être utilisés dans des environnements corrosifs tels que l'agro-alimentaire ou les industries chimiques.

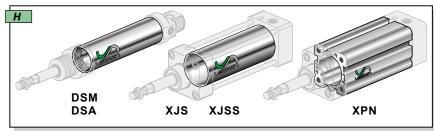

Tous les vérins sont conformes aux normes ISO 6432 et ISO 15552.


Sans lubrification.


DSM et XJSS : tête acier inoxydable X5 Cr Ni 1810 XJS et XPN : Tête Polymère acétal.


Têtes faciles à nettoyer.


Tiges en acier inoxydable X5 Cr Ni 1810.


Joints de tiges polyuréthane.

Parties externes en acier inoxydable X5 Cr Ni 1810.

Auto-lubrification des douilles en acier cuivré avec dépôt en Teflon.

DSM, XJS et XJSS: tige acier inoxydable X5 Cr Ni 1810 XPN: aluminium anodisé.

Vérins acier inoxydable avec embout et tête de vis

Alésage (mm): Ø12 12 Ø16 16 Ø20 20 Ø25 25 Course P Tige de piston cylindre SEA Ressort avant simple effet SEP Ressort arrière simple effet

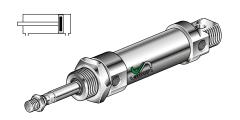
Vérins anti-corrosion ISO 6432

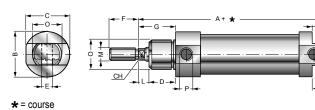
Série DSM

Tige: Acier inox X10 Cr Ni S 18-09
Embouts: Acier inox X10 Cr Ni S 18-09
Corps: Acier inox X10 Cr Ni S 18-09
Joint de tige: VITON (autres en NBR)
Amortisseur: Mécanique polyuréthane
Températures de travail: -10°C à +70°C

Lubrification: Sans lubrification

Fluide: Air filtré


Pression maxi de travail: 10 bar

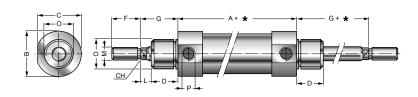

Alfaana		Course standard												
Alesage	10	25	50	80	100	125	160	200	250	300	350	400	450	500
12	•	•	•	•	•	•	•							
16	•	•	•	•	•	•	•	•	•	•				
20	•	•	•	•	•	•	•	•	•	•	•	•	•	•
25	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•

DSM .. / ...

(mm):

Simple tige

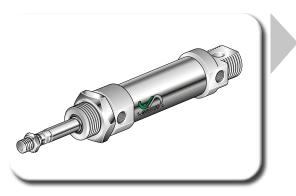




Alésage	Α	ØВ	С	СН	D	ØE	F	G		L	ØM	N	ØO	ØР	R
12	75	18	17,2	5	15	6	16	22	12	7	M6x1	9	M16x1,5	M5	22
16	82	20	19	5	15	6	16	22	12	7	M6x1	9	M16x1,5	M5	22
20	95	25	26,2	7	19	8	20	24	16	5	M8x1,25	12	M22x1,5	G1/8	30
25	104	30	28,3	8	20	8	22	28	16	8	M10x1,25	12	M22x1,5	G1/8	30

DSM .. / ... P

Tige traversante



Alésage	Α	ØВ	С	СН	D	F	G	L	ØM	ØO	ØP
12	49,5	18	17,2	5	15	16	22	7	M6x1	M16x1,5	M5
16	56	20	19	5	15	16	22	7	M6x1	M16x1,5	M5
20	68	28	26,2	7	19	20	24	5	M8x1,25	M22x1,5	G1/8
25	69	30	28.3	8	20	22	28	8	M10x1 25	M22x1.5	G1/8

* = course

Vérins acier inoxydable avec embout et tête en résine acétal.

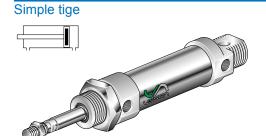
Alésage (mm) Ø12 12 Ø16 16 Ø20 20 Ø25 25 Course (mm) P Tige du cylindre SEA Ressort avant simple effet SEP Ressort arrière simple effet

Vérins anti-corrosion ISO 6432

Série DSA

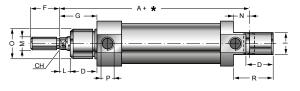
Tige: Acier inox X10 Cr Ni S 18-09
Embouts: Résine acétal
Corps: Acier inox X10 Cr Ni S 18-09

Joint de tige : Polyuréthane (autres en NBR) Amortisseur : Mécanique polyuréthane Températures de travail : -10°C à +70°C

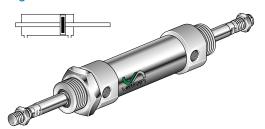

Lubrification: Sans lubrification

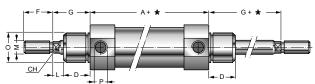
Fluide : Air filtré

Pression maxi de travail: 10 bar


Alégana				C	ourse	standa	rd		
Alesage	10	25	50	80	100	125	160	200	250
12	•	•	•	•	•				
16	•	•	•	•	•	•	•	•	
20	•	•	•	•	•	•	•	•	•
25	•	•	•	•	•	•	•	•	•

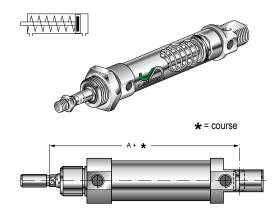
DSA .. / ...


★ = course

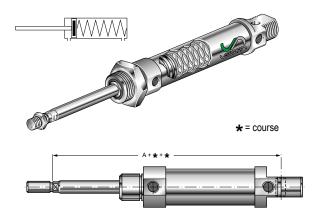

Alésage	Α	ØВ	С	СН	D	ØE	F	G		L	ØM	N	ØO	ØP	R
12	75	18	17,2	5	15	6	16	22	12	7	M6x1	9	M16x1,5	M5	22
16	82	20	19	5	15	6	16	22	12	7	M6x1	9	M16x1,5	M5	22
20	95	25	23,5	7	19	8	20	24	16	5	M8x1,25	12	M22x1,5	G1/8	30
25	104	30	28,3	8	20	8	22	28	16	8	M10x1,25	12	M22x1,5	G1/8	30

DSA . . / ... P

Tige traversante

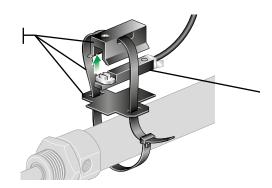


* = course


Alésage	Α	ØВ	С	СН	D	F	G	L	ØM	ØO	ØР
12	49,5	18	17,2	5	15	16	22	7	M6x1	M16x1,5	M5
16	56	20	19	5	15	16	22	7	M6x1	M16x1,5	M5
20	68	28	23,5	7	19	20	24	5	M8x1,25	M22x1,5	G1/8
25	69	30	28,3	8	20	22	28	8	M10x1,25	M22x1,5	G1/8

DS .. / ... SEA Simple effet ressort avant

DS .. / ... SEP Simple effet ressort arrière



Alésage	Α
12	75
16	82
20	95
25	104

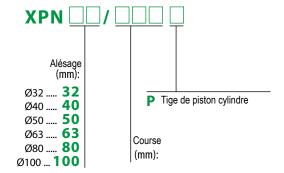
course		Course standard												
mm	Ø	12	Ø	16	Ø	20	Ø	25	SEA	SEP				
	min	max	min	max	min	max	min	max						
10	2,1	2,4	2,2	2,5	2,3	2,6	2,3	2,6	•	•				
25	1,6	2,4	1,6	2,5	1,7	2,6	1,7	2,6	•	•				
50	0,35	2,4	0,5	2,5	1	2,6	1	2,6	•	•				

Interrupteur magnétique pour vérin ISO 6432

FFS 0 1 VN

Alésage
12
16
20
0.5

Caractéristiques de l'interrupteur magnétique


- VNCR2
- VNPR2
- VNCE3
- VNPE3

Avec piston magnétique

Vérins anti-corrosion ISO 1552

Série XPN

Tige: Acier inox X10 Cr Ni S 18-09

Embouts: Polymère acetal (Zellamid 900).

Corps: Tube profilé et anodisé

Joint de tige : Polyuréthane (autres en NBR) Amortisseur : Réglage pneumatique Températures de travail : -10°C à +70°C

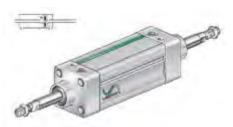
Lubrification: Sans lubrification

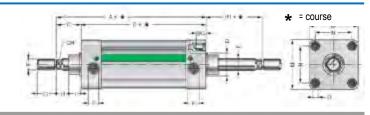
Fluide: Air filtré

Pression maxi de travail: 10 bar

Alécago Course standard													Longueur effective						
Alésage	25	50	80	100	125	160	200	250	300	350	400	450	500	600	700	800	900	1000	de l'amortisseur
32	•	•	•	•	•	•	•	•	•	•	•	•	•						24
40	•	•	•	•	•	•	•	•	•	•	•	•	•						27
50	•	•	•	•	•	•	•	•	•	•	•	•	•						30
63	•	•	•	•	•	•	•	•	•	•	•	•	•						30
80	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38

XPN .. / ... Simple tige





Alésage	Α	В	С	D	Е	F	G	Н		L	М	N	0	Р	BG	СН
32	120	94	26	30	12	M10x1,25	20	7	19	4	47	32,5	M6	G1/8	15	10
40	135	105	30	35	16	M12x1,25	24	8	22	4	54	38	M6	G1/4	15	13
50	143	106	37	40	20	M16x1,5	32	11	26	2	66	46,5	M8	G1/4	15	17
63	158	121	37	45	20	M16x1,5	32	13	24	4	78	56,5	M8	G3/8	15	17
80	174	128	46	45	25	M20x1,5	40	20	26	2	98	72	M10	G3/8	18	21
100	189	138	51	55	25	M20x1,5	40	25	26	2	115	89	M10	G1/2	18	25

XPN .. / ... P

Alésage	Α	В	С	D	Е	F	G	Н	H1		М	N	0	Р	ВG	СН
32	120	94	26	30	12	M10x1,25	20	7	26	19	47	32,5	M6	G1/8	15	10
40	135	105	30	35	16	M12x1,25	24	8	30	22	54	38	M6	G1/4	15	13
50	143	106	37	40	20	M16x1,5	32	11	37	26	66	46,5	M8	G1/4	15	17
63	158	121	37	45	20	M16x1,5	32	13	37	24	78	56,5	M8	G3/8	15	17
80	174	128	46	45	25	M20x1,5	40	20	46	26	98	72	M10	G3/8	18	21
100	189	138	51	55	25	M20x1,5	40	25	51	26	115	89	M10	G1/2	18	25

Alésage (mm): Ø32 32 Ø40 40 Ø50 50 Ø63 63 Ø80 80 Ø100 ... 100

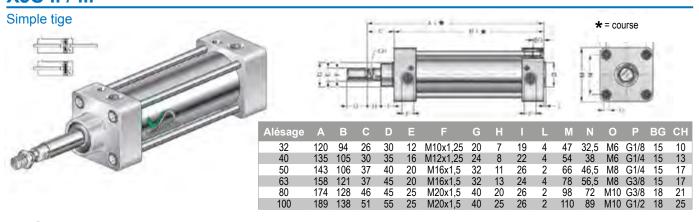
Vérins anti-corrosion ISO 1552

Série XJS

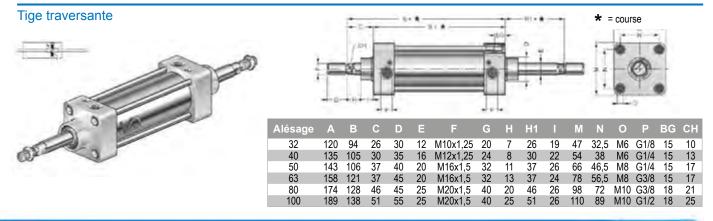
Tige: Acier inox X10 Cr Ni S 18-09

Embouts: Polymère acetal (Zellamid 900).
Corps: Acier inox X10 Cr Ni S 18-09
Joint de tige: Polyuréthane (autres en NBR)

Amortisseur : Réglage pneumatique **Températures de travail :** -10°C à +70°C


Lubrification: Sans lubrification

Fluide : Air filtré


Pression maxi de travail: 10 bar

Alácago	Course standard													Longueur effective	
Alesage	25	50	80	100	125	160	200	250	300	350	400	450	500	600	de l'amortisseur
32	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
40	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
50	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
63	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
80	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38

XJS .. / ...

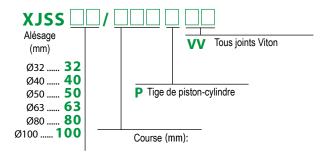
XJS .. / ... P

Vérins anti-corrosion ISO 1552

Série XJSS

Tige: Acier inox X10 Cr Ni S 18-09

Embouts: Polymère acetal (Zellamid 900)

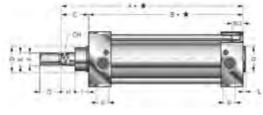

Corps: Acier inox X10 Cr Ni S 18-09

Joint de tige : Polyuréthane (autres en NBR) Amortisseur : Réglage pneumatique Températures de travail : -10°C à +70°C

Lubrification: Sans lubrification

Fluide : Air filtré

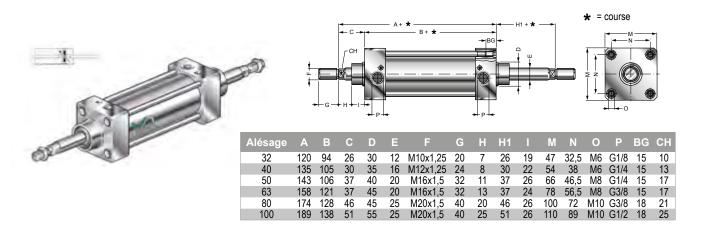

Pression maxi de travail: 10 bar



Alásaga						Co	ourse	standa	ard						Longueur effective		
Alésage	25	50	80	100	125	160	200	250	300	350	400	450	500	600	de l'amortisseur		
32	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24		
40	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27		
50	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30		
63	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30		
80	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36		
100	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38		

XJSS .. / ...

Simple tige



Alésage	Α	В	С	D	Е	F	G	Н		L	М	N	0	Р	BG	СН
32	120	94	26	30	12	M10x1,25	20	7	19	4	47	32,5	M6	G1/8	15	10
40	135	105	30	35	16	M12x1,25	24	8	22	4	54	38	M6	G1/4	15	13
50	143	106	37	40	20	M16x1,5	32	11	26	2	66	46,5	M8	G1/4	15	17
63	158	121	37	45	20	M16x1,5	32	13	24	4	78	56,5	M8	G3/8	15	17
80	174	128	46	45	25	M20x1,5	40	20	26	2	100	72	M10	G3/8	18	21
100	189	138	51	55	25	M20x1,5	40	25	26	2	110	89	M10	G1/2	18	25

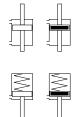
XJSS .. / ... P

Tige traversante

Vérins pneumatiques course brève

Série SH

Alésage: Ø12 - 16 - 20 - 25 - 32 - 40 - 50 - 63 - 80 -

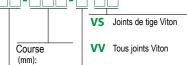

100 -125 - 160 - 200 mm Courses: A la demande Tige: Acier inox X10 Cr Ni S 18-09 Tube: Aluminium anodisé Joint : Polyuréthane nbr Amortisseur: Mécanique

Températures de travail : -20°C à +60°C

Lubrification: Sans lubrification

Fluide: Air filtré

Pression maxi de travail: 10 bar



D Cylindre double effet

S Cylindre simple effet

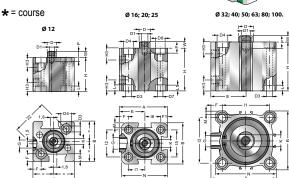
DM Double effet magnétique

SM Simple effet magnétique

Tige de piston cylindre

AR Cylindre anti-rotation

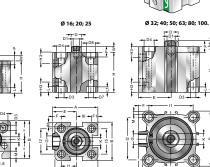
Alésage (mm):


	,
Ø12 12	Ø63 63
Ø16 16	Ø80 80
Ø20 20	Ø100 100
Ø25 25	Ø125 125
Ø32 32	Ø160 160
Ø40 40	Ø200 200
Ø50 50	

SHD.. - ... (non magnétique)

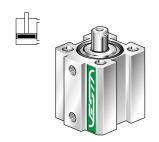
Double effet simple tige

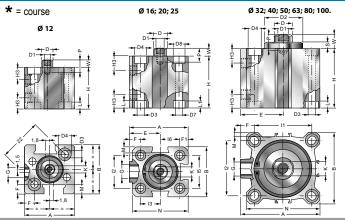
					Co	urse	(mm)				
Ø	5	10	15	20	25	30	40	50	60	80	100
12	22	27	32	37	42	47	57	-	-	-	-
16	32	37	42	47	52	58	68	78	-	-	-
20	32	37	42	47	52	58	68	78	-	-	-
25	33,5	38,5	43,5	48,5	53,5	58,5	69,5	79,5	-	-	-
32	34,5	39,5	44,5	49,5	54,5	59,5	69,5	79,5	89,5	109,5	129,5
40	34,5	39,5	44,5	49,5	54,5	59,5	69,5	79,5	89,5	109,5	129,5
50	-	44,5	49,5	54,5	59,5	64,5	74,5	84,5	94,5	114,5	134,5
63	-	47	52	57	62	67	77	87	97	117	137
80	-	56	61	66	71	76	86	96	106	126	146
100	-	66	71	76	81	86	96	106	116	136	156
~			e'n	B.4	C/DA	er Dit	C/D-	O'D A			


SHS.. - ... (non magnétique)

Simple effet ressort avant

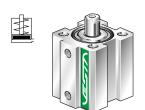
* = course

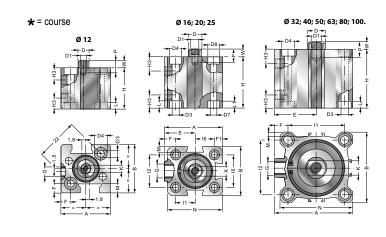



				Cou	rse (m	m)		
Ø	5	10	15	20	25	30	40	50
12	22	27	-	-	-	-	-	-
16	32	37	42	47	52	-	-	-
20	32	37	42	47	52	-	-	-
25	33,5	38,5	43,5	48,5	53,5	-	-	-
32	34,5	39,5	44,5	49,5	54,5	59,5	79,5	89,5
40	34,5	39,5	44,5	49,5	54,5	59,5	79,5	89,5
50	-	44,5	49,5	54,5	59,5	64,5	84,5	94,5
63	-	47	52	57	62	67	87	97
80	-	56	61	66	71	76	96	106
100	-	66	71	76	81	86	106	116

Ø	Α	В	ØD	D1	ØD3	ØD4	ØD7	ØD8	Е	F	F1	G	НЗ	11	12	15	16	K	L	L1	М	N	Р	W
12	25	25	6	M3	3,7	5,6	-	-	-	4,7	-	M5	5,5	-	-	-	-	5	3,5	-	4,7	-	6	3,5
16	34	30	8	M4	4,7	7,5	3,7	5,6	19	7	5	M5	8	12	18	20	10	6	4,6	3,5	4	32	8	4,5
20	40	36	10	M5	5,8	9	5,8	9	22	7	5,2	M5	8	15	20	25,5	12,7	8	5,7	5,7	5,7	38,5	10	5
25	44,5	40	10	M5	5,8	9	5,8	9	24,5	9	6	G1/8	10,5	15,5	26	28	14	8	5,7	5,7	4,5	42	10	5,5
32	51	46	12	M6	5,8	9	-	-	27	9	-	G1/8	11,5	36	32	-	-	10	5,7	-	4	48	12	6
40	58	55	12	M6	5,8	9	-	-	30,5	9,5	-	G1/8	11	42	42	-	-	10	5,7	-	4	55	12	6
50	70	65	16	M8	6,8	11	-	-	37,5	12,5	-	G1/8	11,5	50	50	-	-	13	6,8	-	4	65	12	7,5
63	86	80	16	M8	9	14	-	-	46	15	-	G1/8	11	62	62	-	-	13	8,8	-	5	80	14	7
80	105	100	20	M10	9	14	-	-	55	14	-	G1/4	14	82	82	-	-	17	9	-	6	100	15	8
100	131	124	25	M12	11	17,2	-	-	69	17,5	-	G1/4	16	103	103	-	-	22	11	-	7,5	124	20	10

SHDM.. - ... (magnétique) Double effet simple tige



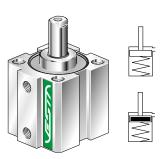

														-	- A —											
Ø	Α	В	ØD	D1	ØD2	ØD3	ØD4	ØD7	ØD8	Е	F	F1	G	Н3	11	12	15	16	K	L	L1	M	N	Р	S	W
12	25	25	6	M3	-	3,7	5,6	-	-	-	4,7	-	M5	5,5	-	-	-	-	5	3,5	-	4,7	-	6	-	3,5
16	34	30	8	M4	-	4,7	7,5	3,7	5,6	19	7	5	M5	8	-	18	20	10	6	4,6	3,5	4	32	8	-	4,5
20	40	36	10	M5	-	5,8	9	5,8	9	22	7	5,2	M5	8	-	20	25,5	12,7	8	5,7	5,7	5,7	38,5	10	-	4,5
25	44,5	40	10	M5	-	5,8	9	5,8	9	24,5	9	6	G1/8	10,5	-	26	28	14	8	5,7	5,7	4,5	42	10	-	5,5
32	51	46	12	M6	24,5	5,8	9	-	-	27	9	-	G1/8	11,5	36	32	-	-	10	5,7	-	4	48	12	5	11
40	58	55	12	M6	28	5,8	9	-	-	30,5	9,5	-	G1/8	11	42	42	-	-	10	5,7	-	4	55	12	6	12,5
50	70	65	16	M8	34	6,8	11	-	-	37,5	12,5	-	G1/8	11,5	50	50	-	-	13	6,8	-	4	65	12	6	13,5
63	86	80	16	M8	38,5	9	14	-	-	46	15	-	G1/8	11	62	62	-	-	13	8,8	-	5	80	14	8	15
80	105	100	20	M10	44	9	14	-	-	55	14	-	G1/4	14	82	82	-	-	17	9	-	6	100	15	10	18
100	131	124	25	M12	56	11	17,2	-	-	69	17,5	-	G1/4	16	103	103	-	-	22	11	-	7,5	124	20	10,5	20,5

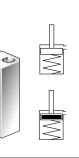
							Co	ourse (mr	n)						
Ø	5	10	15	20	25	30	40	50	60	80	100	125	160	200	250
12	32	37	42	47	52	57	-	-	-	-	-	-	-	-	-
16	37	42	47	52	63	68	78	88	98	118	138	-	-	-	-
20	37	42	47	52	63	68	78	88	98	118	138	163	-	-	-
25	43,5	48,5	53,5	58,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	164,5	-	-	-
32	44,5	49,5	54,5	59,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	164,5	199,5	-	-
40	44,5	49,5	54,5	59,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	164,5	199,5	-	-
50	-	49,5	54,5	59,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	164,5	199,5	239,5	-
63	-	52	57	62	67	72	82	92	102	122	142	167	202	242	-
80	-	56	61	66	71	76	86	96	106	126	146	171	206	246	296
100	-	66	71	76	81	86	96	106	116	136	156	181	216	256	306

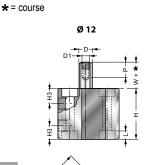
SHSM.. - ... (magnétique)

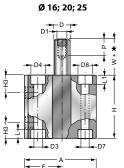
Simple effet ressort avant

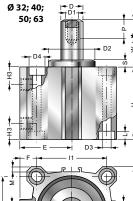
C.			αD	D4	C D O	CD 4	CD-	C'D0			-1		110	1,1	10	10	10	17		1.4				107				Co	ourse	e (mi	m)		
ه	А	В	ØD	DΊ	ØD3	9 04	וטש	פטש	-	м	FI	G	ПЗ	11	12	15	16	N.	15	ш	IVI	N	Р.	W	Ø	5	10	15	20	25	30	40	50
12	25	25	6	M3	3,7	5,6	-	-	-	4,7	-	M5	5,5	-	-	-	-	5	3,5	-	4,7	-	6	3,5	12	32	37						
16	34	30	8	M4	4,7	7,5	3,7	5,6	19	7	5	M5	8	12	18	20	10	6	4,6	3,5	4	32	8	4,5	16	37	42	47	52	63			
20	40	36	10	M5	5,8	9	5,8	9	22	7	5,2	M5	8	15	20	25,5	12,7	8	5,7	5,7	5,7	38,5	10	4,5	20	37	42	47	52	63			
25	44,5	40	10	M5	5,8	9	5,8	9	24,5	9	6	G1/8	10,5	15,5	26	28	14	8	5,7	5,7	4,5	42	10	5,5	25	43,5	48,5	53,5	58,5	64,5			
32	51	46	12	M6	5,8	9	-	-	27	9	-	G1/8	11,5	36	32	-	-	10	5,7	-	4	48	12	5,5	32	44,5	49,5	54,5	59,5	64,5	69,5	89,5	99,5
40	58	55	12	M6	5,8	9	-	-	30,5	9,5	-	G1/8	11	42	42	-	-	10	5,7	-	4	55	12	6,5	40	44,5	49,5	54,5	59,5	64,5	69,5	89,5	99,5
50	70	65	16	M8	6,8	11	-	-	37,5	12,5	-	G1/8	11,5	50	50	-	-	13	6,8	-	4	65	12	7,5	50	-	49,5	54,5	59,5	64,5	69,5	89,5	99,5
63	86	80	16	M8	9	14	-	-	46	15	-	G1/8	11	62	62	-	-	13	8,8	-	5	80	14	6,5	63	-	52	57	62	67	72	92	102
80	105	100	20	M10	9	14	-	-	55	14	-	G1/4	14	82	82	-	-	17	9	-	6	100	15	8	80	-	56	61	66	71	76	96	106
100	131	124	25	M12	11	17,2	-	-	69	17,5	-	G1/4	16	103	103	-	-	22	11	-	7,5	124	20	10	100	-	66	71	76	81	86	106	116

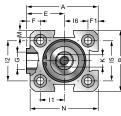


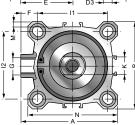

SHS.. - ... SEP (non magnétique)


SHSM.. - ... SEP (magnétique)


Simple effet ressort arrière


Simple effet ressort arrière





			Cou	ırse (ı	nm)		
Ø	5	10	15	20	25	30	50
SHS 12 SEP	22	27	-	-	-	-	-
SHSM 12 SEP	32	37	-	-	-	-	-
SHS(M) 16 SEP	37	42	47	-	-	-	-
SHS(M) 20 SEP	37	42	47	63	68	-	-
SHS(M) 25 SEP	43,5	48,5	53,5	64,5	69,5	-	-
SHS(M) 32 SEP	44,5	49,5	54,5	64,5	69,5	79,5	119,5
SHS(M) 40 SEP	-	49,5	54,5	59,5	64,5	69,5	-
SHS(M) 50 SEP	-	49,5	54,5	59,5	64,5	69,5	-
SHS(M) 63 SEP	-	52	57	62	67	72	-

1,8 D4 B	₩ W W W W W W W W W
----------	---------------------------------------

Ø	Α	В	ØD	D1	ØD2	ØD3	ØD4	ØD7	ØD8	Е	F	F1	G	Н3	11	12	15	16	K	L	L1	М	N	Р	S	W
SHS 12 SEP	25	25	6	М3	-	3,7	5,6	-	-	-	4,7	-	M5	5,5	-	-	-	-	5	3,5	-	4,7	-	6	-	3,5
SHSM 12 SEP	25	25	6	M3	-	3,7	5,6	-	-	-	4,7	-	M5	5,5	-	-	-	-	5	3,5	-	4,7	-	6	-	3,5
SHS(M) 16 SEP	34	30	8	M4	-	4,7	7,5	3,7	5,6	19	7	5	M5	8	12	18	20	10	6	4,6	3,5	4	32	8	-	4,5
SHS(M) 20 SEP	40	36	10	M5	-	5,8	9	5,8	9	22	7	5,2	M5	8	15	20	25,5	12,7	8	5,7	5,7	5,7	38,5	10	-	4,5
SHS(M) 25 SEP	44,5	40	10	M5	-	5,8	9	5,8	9	24,5	9	6	G1/8	10,5	15,5	26	28	14	8	5,7	5,7	4,5	42	10	-	5,5
SHS(M) 32 SEP	51	46	12	M6	24,5	5,8	9	-	-	27	9	-	G1/8	11,5	36	32	-	-	10	5,7	-	4	48	12	5	11
SHS(M) 40 SEP	58	55	12	M6	28	5,8	9	-	-	30,5	9,5	-	G1/8	11	42	42	-	-	10	5,7	-	4	55	12	6	12,5
SHS(M) 50 SEP	70	65	16	M8	34	6,8	11	-	-	37,5	12,5	-	G1/8	11,5	50	50	-	-	13	6,8	-	4	65	12	6	13,5
SHS(M) 63 SEP	86	80	16	M8	38,5	9	14	-	-	46	15	-	G1/8	11	62	62	-	-	13	8,8	-	5	80	14	8	15

SHD.. - ... P (non magnétique)

SHDM.. - ... P (magnétique)

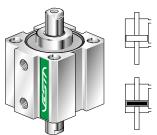
* = course

Tige traversante

40

50

63

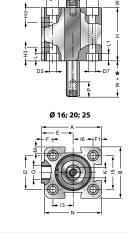

80

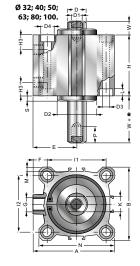
44,5 49,5

49,5 54,5 59,5 64,5 69,5

52 57 62 67

54,5 59,5 Tige traversante




			I						
							Cou	rse (n	nm)
Ø	5	10	15	20	25	30	40	50	60
16	37	42	47	52	63	68	78	88	98
20	37	42	47	52	63	68	78	88	98 98
25	43,5	48,5	53,5	58,5	64,5	69,5	79,5	89,5	99,
32	44.5	49.5	54.5	59.5	64.5	69.5	79.5	89.5	99.

64,5 69,5 79,5 89,5

79,5 89,5 99,5

72 82 92

Ø	Α	В	ØD	D1	ØD2	ØD3	ØD4	ØD7	ØD8	Е	F	F1	G	Н3	11	12	15	16	K	L	L1	М	N	Р	S	W
16	34	30	8	M4	-	4,7	7,5	3,7	5,6	19	7	5	M5	8	-	18	20	10	6	4,6	3,5	4	32	8	-	4,5
20	40	36	10	M5	-	5,8	9	5,8	9	22	7	5,2	M5	8	-	20	25,5	12,7	8	5,7	5,7	5,7	38,5	10	-	4,5
25	44,5	40	10	M5	-	5,8	9	5,8	9	24,5	9	6	G1/8	10,5	-	26	28	14	8	5,7	5,7	4,5	42	10	-	5,5
32	51	46	12	M6	24,5	5,8	9	-	-	27	9	-	G1/8	11,5	36	32	-	-	10	5,7	-	4	48	12	5	11
40	58	55	12	M6	28	5,8	9	-	-	30,5	9,5	-	G1/8	11	42	42	-	-	10	5,7	-	4	55	12	6	12,5
50	70	65	16	M8	34	6,8	11	-	-	37,5	12,5	-	G1/8	11,5	50	50	-	-	13	6,8	-	4	65	12	6	13,5
63	86	80	16	M8	38,5	9	14	-	-	46	15	-	G1/8	11	62	62	-	-	13	8,8	-	5	80	14	8	15
80	105	100	20	M10	44	9	14	-	-	55	14	-	G1/4	14	82	82	-	-	17	9	-	6	100	15	10	18
100	131	124	25	M12	56	11	17,2	-	-	69	17,5	-	G1/4	16	103	103	-	-	22	11	-	7,5	124	20	10,5	20,5

100 125 160 200

202 242

119,5 139,5 164,5 199,5

142 167

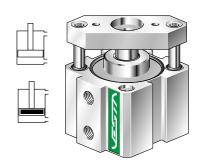
146

119,5 139,5 164,5 199,5 239,5

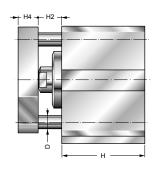
181

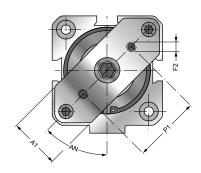
118 138

118 138 119,5 139,5 164,5 119,5 139,5 164,5 199,5


136

99,5

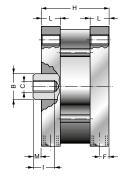

102 122

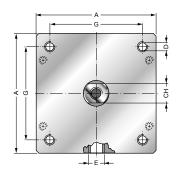


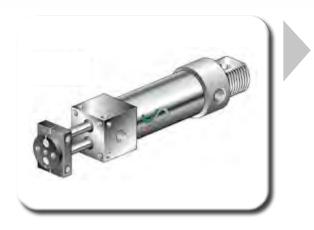
SHD.. - ... AR (non magnétique)

SHDM.. - ... AR (magnétique) Antirotation

						С	ourse (mr	n)					
Ø	5	10	15	20	25	30	40	50	60	80	100	125	160
20	37	42	47	52	63	68	78	88	98	118	138	-	-
25	43,5	48,5	53,5	58,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	-	-
32	44,5	49,5	54,5	59,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	-	-
40	44,5	49,5	54,5	59,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	-	-
50	-	49,5	54,5	59,5	64,5	69,5	79,5	89,5	99,5	119,5	139,5	164,5	-
63	-	52	57	62	67	72	82	92	102	122	142	167	202
80	-	56	61	66	71	76	86	96	106	126	146	171	206
100	-	66	71	76	81	86	96	106	116	136	156	181	216


Ø	Α	В	ØD	D1	ØD2	ØD3	ØD4	ØD7	ØD8	Е	F	F1	G	Н3	I 1	12	15	16	K	L	L1	М	N	Р	S	W
16	34	30	8	M4	-	4,7	7,5	3,7	5,6	19	7	5	M5	8	-	18	20	10	6	4,6	3,5	4	32	8	-	4,5
20	40	36	10	M5	-	5,8	9	5,8	9	22	7	5,2	M5	8	-	20	25,5	12,7	8	5,7	5,7	5,7	38,5	10	-	4,5
25	44,5	40	10	M5	-	5,8	9	5,8	9	24,5	9	6	G1/8	10,5	-	26	28	14	8	5,7	5,7	4,5	42	10	-	5,5
32	51	46	12	M6	24,5	5,8	9	-	-	27	9	-	G1/8	11,5	36	32	-	-	10	5,7	-	4	48	12	5	11
40	58	55	12	M6	28	5,8	9	-	-	30,5	9,5	-	G1/8	11	42	42	-	-	10	5,7	-	4	55	12	6	12,5
50	70	65	16	M8	34	6,8	11	-	-	37,5	12,5	-	G1/8	11,5	50	50	-	-	13	6,8	-	4	65	12	6	13,5
63	86	80	16	M8	38,5	9	14	-	-	46	15	-	G1/8	11	62	62	-	-	13	8,8	-	5	80	14	8	15
80	105	100	20	M10	44	9	14	-	-	55	14	-	G1/4	14	82	82	-	-	17	9	-	6	100	15	10	18
100	131	124	25	M12	56	11	17,2	-	-	69	17,5	-	G1/4	16	103	103	-	-	22	11	-	7,5	124	20	10,5	20,5


SHD.. - ... (non magnétique) Double effet Ø125 - 160 - 200


			Cou	urse (r	nm)		
Ø	25	50	75	100	125	160	200
125	103	128	153	178	203	238	278
160	112	137	162	187	212	247	287
200	112	137	162	187	212	247	287

SHDM.. - ... (magnétique) Double effet Ø125 - 160 - 200

- 2 Cylindre basique
- 3 Cylindre à tige de piston jumelles et à double tige de pistons

Vérins pneumatiques multi-tiges anti-rotation

2 tiges - série AR2-AR3

Courses: 25, 50, 80, 100, 125, 160, 200, 250

Tige : Alliage d'aluminium **Piston** : Acier inox X5 CrNi 1810 **Corps** : Aluminium anodisé

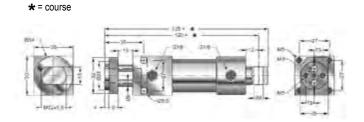
Joint: NBR

Amortisseur : Mécanique

Températures ambiantes : -10°C à +80°C Températures de fluide : 0°C à +40°C

Lubrification: Non requise

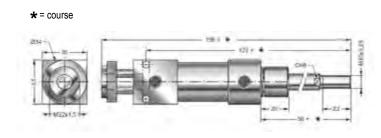
Fluide : Air filtré

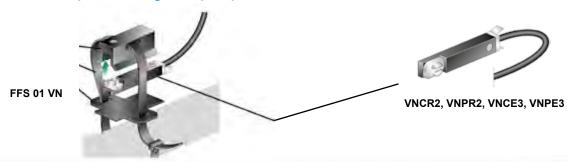

Pression maxi de travail: 10 bar

Alássus				Course	standar	d		
Alésage	25	50	80	100	125	160	200	250
25	•	•	•	•	•	•	•	•

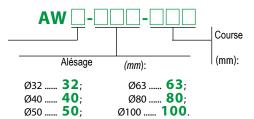
AR2-25-...

Vérin double tige standard Ø25




AR3-25-...

Vérin double tige + tige traversante Ø25



Interrupteur magnétique pour vérin Ø25

- 2 : Cylindre à base double
- 3 : Cylindre à tiges jumelles
- 4 : Cylindre avec tiges de piston jumelles et tiges de piston double

Vérins pneumatiques multi-tiges anti-rotation 2 tiges - série AW2-AW3-AW4

Courses: 25, 50, 80, 100, 125, 160, 200, 250

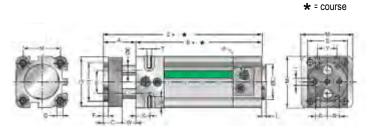
Tige: Alliage d'aluminium Piston: Acier inox X20 Cr13

Corps : Tube profilé en aluminium anodisé

Joint: NBR

Amortisseur : Réglage progressif pneumatique Températures ambiantes : -10°C à +80°C Températures de fluide : 0°C à +40°C

Lubrification: Non requise


Fluide: Air filtré

Pression maxi de travail: 10 bar

Alássus					C	ours	e stai	ndard	t				
Alésage	25	50	80	100	125	160	200	250	300	350	400	450	500
						mm							
32	•	•	•	•	•	•	•	•	•	•	•	•	•
40	•	•	•	•	•	•	•	•	•	•	•	•	•
50	•	•	•	•	•	•	•	•	•	•	•	•	•
63	•	•	•	•	•	•	•	•	•	•	•	•	•
80	•	•	•	•	•	•	•	•	•	•	•	•	•
100	•	•	•	•	•	•	•	•	•	•	•	•	•

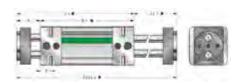
Vérin double tige standard

Alésac	70										Cours	se stai	ndard										
Alesag	Je A	В	С	ØD	ØE	F	G	ØН	ØI	L	M	N	ØO	ØP	R	S	ØΤ	V	W	Х	Υ	Ζ	K
											mm												
32	26	102	15	30	8	4	40	32	M6	4	45	32.5	M6	G1/8	9.5	32	M5	10	11	15	16	128	18
40	30	112	15	35	10	4	45	40	M8	4	55	38	M6	G1/4	11.5	40	M6	10	15	17.5	21	142	21
50	34	117	18	40	12	5	55	50	M8	4	65	46.5	M8	G1/4	15	50	M8	12	16	16	24	151	26
63	36	124	22	45	16	5	70	63	M10	4	80	56.5	M8	G3/8	19	63	M8	12	18	18	33	160	35
80	38	136	22	45	20	5	95	80	M12	4	100	72	M10	G3/8	25	80	M10	18	19	19	40	174	46
100	38	143	22	55	20	5	115	100	M12	4	115	89	M10	G1/2	35	100	M10	18	19	19	58	181	70

AW3-...-

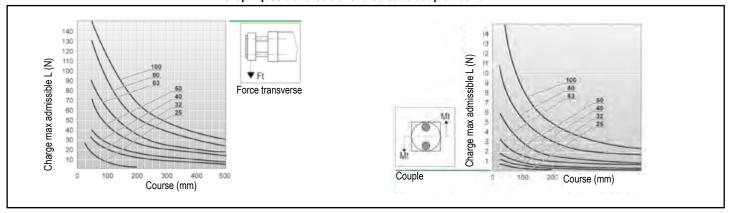
Vérin double tige + tige traversante

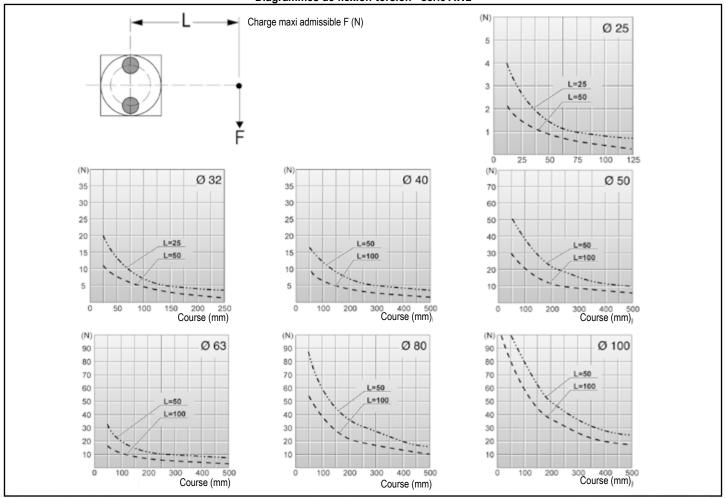
Alésage					Cours	e stan	dard			
Alesage	Α	A1	А3	В	C1	CH	ØD	ØE1		ØH1
					mm					
32	26	26	154	102	20	10	30	12	18	M10 × 1.25
40	30	30	172	112	24	13	35	16	21.5	M12 × 1.25
50	34	37	188	117	32	17	40	20	28	M16 × 1.5
63	36	37	197	124	32	17	45	20	28.5	M16 × 1.5
80	38	46	220	136	40	21	45	25	34.5	M20 × 1.5
100	38	51	232	143	40	25	55	30	38	M20 × 1.5



★ = course

AW4-...-


Vérin double tige traversante



Alésage			Course	standard		
Alesage	Α	A2	A4	В	X	Z
			mm			
32	26	26	154	102	15	128
40	30	30	172	112	17.5	142
50	34	34	185	117	16	151
63	36	36	196	125	18	160
80	38	38	212	136	19	174
100	38	38	219	143	19	181

Graphiques de force transverse et de couple - série AW2

Diagrammes de flexion-torsion - série AW2

Course

(mm):

Alésage Ø32 **32**; Ø63 **63**;

Ø40 **40**; Ø50 **50**;

6 : Cylindre antirotation à triples cylindres

8 : Cylindre non rotatif 3 branches souches transfixation

Vérins pneumatiques multi-tiges anti-rotation

3 tiges anti-rotation - série AW6 - AW8

Courses: 25, 50, 100, 160, 200, 250, 300, 350, 400, 450, 500

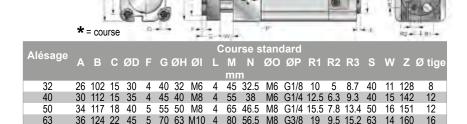
Embouts: Alliage d'aluminium Piston: Acier inox X20 Cr13

Corps : Tube profilé en aluminium anodisé

Joint : NBR et polyuréthane

Amortisseur: Réglage micrométrique Températures ambiantes : -10°C à +80°C Températures de fluide : 0°C à +40°C

Lubrification: Non requise


Fluide : Air filtré

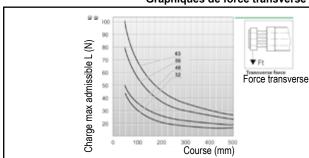
Pression maxi de travail: 10 bar

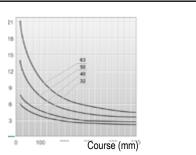
Alássass					Cours	se sta	ndard				
Alesage	25	50	100	160	200	250	300	350	400	450	500
					mm						
32	•	•	•	•	•	•	•	•	•	•	•
40	•	•	•	•	•	•	•	•	•	•	•
50	•	•	•	•	•	•	•	•	•	•	•
63	•	•	•	•	•	•	•	•	•	•	•

AW6-...-

70 63 M10 4

AW8-...-





Alésage					C	Course	stand	lard			
Alesage	Α	A1	А3	В	C1	CH	ØD	ØE1	F1	H1	Z
						mm					
32	26	26	154	102	20	10	30	12	18	M10 × 1.25	128
40	30	30	172	112	24	13	35	16	21.5	M12 × 1.25	142
50	34	37	194	117	32	17	40	20	28	M16 × 1.5	151
63	36	37	197	124	32	17	45	20	28.5	M16 × 1.5	160

Graphiques de force transverse et de couple - série AW6-AW8

Vérins pneumatiques multi-tiges anti-rotation

Série AW1 - AW5 - AW7

Embouts : Alliage d'aluminium **Piston** : Acier chromé et rectifié

Corps: Tube profilé en aluminium anodisé

Joint : NBR et polyuréthane

Amortisseur : Réglage micrométrique Températures ambiantes : -10°C à +80°C Températures de fluide : 0°C à +40°C

Lubrification: Non requise

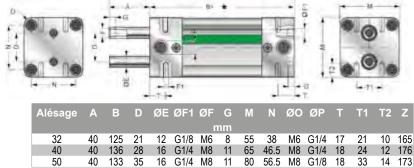
Fluide : Air filtré

Pression maxi de travail: 10 bar

AW1-...-

Vérin 1 tige télescopique

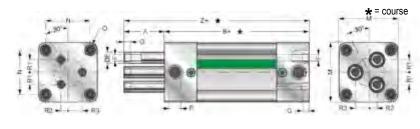
Ø40 **40**; Ø50 **50**;



Alesage	Α	В	BG	C	СН	Øυ	ØD1	ØE.	ØF	ØF1	ы	151	М	N	ØΟ	ØР	w	
								mm										
32	37	94	15	19	11	30	24	12	G1/8	G1/8	4	4	45	32.5	M6	G1/8	18	131
40	40	105	15	18.5	14	35	35	16	G1/4	G1/8	4	5	54	38	M6	G1/4	21.5	145
50	41	106	15	13	18	40	40	20	G3/8	G1/8	4	5	64	46.5	M8	G1/4	28	147

AW5-...-...

Vérin 2 tiges télescopiques



AW7-...-

Vérin 3 tiges télescopiques

Alesage	Α	В	ØE.	ØF	G	M	N	90	Ø۲	R1	R2	R3	
						mm							
32	40	125	12	G1/8	8	55	38	M6	G1/4	9.3	5.4	10.8	165
40	40	135	12	G1/8	8	65	46.5	M8	G1/4	13.4	7.75	15.5	175
50	40	133	16	G1/4	11	80	56.5	M8	G3/8	15.2	8.75	17.5	173

★ = course

Vérins pneumatiques compacts

Série HNG

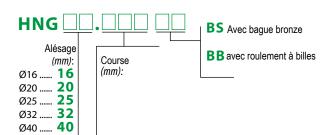
Vérins pneumatiques compacts au profil guidé.

Alésage: Ø16, 20, 25, 32, 40, 50, 63 mm

Courses: 10, 20, 25, 30, 40, 50, 75, 100, 125, 150, 175, 200 **Tige**: Acier chromé Cr45, acier inox chromé AISI 304

Traba - Alemainisma and dia f

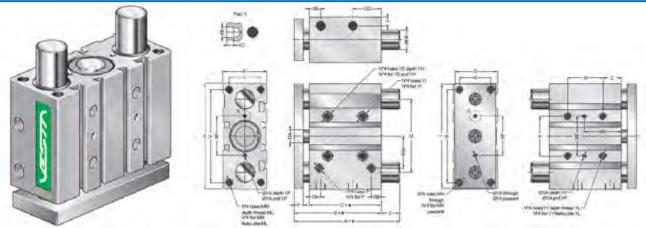
Tube : Aluminium anodisé


Tirants: Inox **Fonds**: Aluminium

Températures de travail : -20°C à +80°C

Lubrification: Non requise

Fluide : Air filtré


Pression maxi de travail: 10 bar

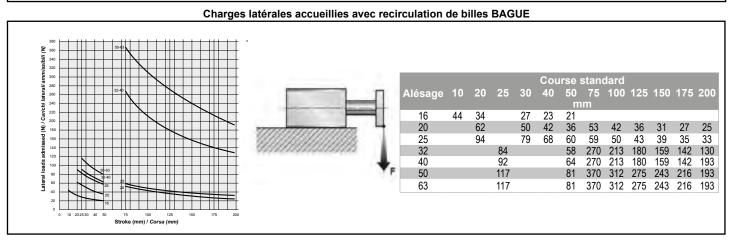
					Co	urse	stand	lard				
Alésage	10	20	25	30	40	50	75	100	125	150	175	200
						m	ım					
16	•	•		•	•	•	•	•				
20		•		•	•	•	•	•	•	•	•	•
25		•	•	•	•	•	•	•	•	•	•	•
32			•			•	•	•	•	•	•	•
40			•			•	•	•	•	•	•	•
50			•			•	•	•	•	•	•	•
63			•			•	•	•	•	•	•	•

HNG

Ø50 **50** Ø63 **63**

Alésage	В	С	DA	F	GA	GB	GC	н	J	K	L	ММ	ML	NN	Р	PW	Q
16	46	33	8	8	11	8	18	64	5	30	22	M5	12	M5	M5	19	16
20	53	37	10	10	10.5	8.5	24.5	83	6.5	36	24	M5	13	M5	G1/8	25	18
25	53.5	37.5	10	10	11.5	9	25	93	7.5	42	30	M6	15	M6	G1/8	28.5	26
32	59.5	37.5	12	12	12.5	9	30.5	112	9	48	34	M8	20	M8	G1/8	34	30
40	66	44	12	12	14	10	31	120	9	54	40	M8	20	M8	G1/8	38	30
50	72	44	16	16	14	11	35	148	9.5	64	46	M10	22	M10	G1/4	47	40
63	77	49	16	16	16.5	13.5	35	162	11	78	58	M10	22	M10	G1/4	55	50

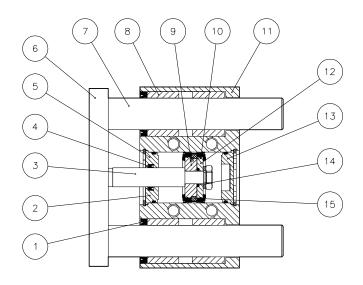
Alésage	R	S	т	U	V	х	YY	YL	YE	YH	ΥI	z	XF	XA	XP	ХВ	хс
16	54	25	62	46	56	24	M5	10	8	4.5	4.3	5	24	3	6	3.5	3
20	70	30	81	54	72	28	M6	12	9.5	5.5	5.6	17	28	3	6	3.5	3
25	78	38	91	64	82	34	M6	12	9.5	5.5	5.6	17	34	4	6	4.5	3
32	96	44	110	78	98	42	M8	16	11	7.5	6.6	21	42	4	6	4.5	3
40	104	44	118	86	106	50	M8	16	11	7.5	6.5	22	50	4	6	4.5	3
50	130	60	146	110	130	66	M10	20	14	9	8.6	24	66	5	8	6	4
63	130	70	158	124	142	80	M10	20	14	9	8.6	24	80	5	8	6	4



Principe de fonctionnement de HNG

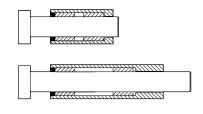
Système de montage Course Course

Charges latérales PERMIS AVEC BUSH autolubrifiant Course standard 40 50 75 100 125 150 175 200 Alésag<mark>e 10 20 25 30</mark> 32 141 141 250 Stroke (mm) / Corsa (mm)



						Course										
Ø	10	20	25	30	40	50	75	100	125	150	175	200				
						mr	n									
16	0,65	0,51		0,42	0,36	0,32										
20		0,99		0,84	0,71	0,64	0,97	0,78	0,63	0,54	0,48	0,43				
25		1,98		1,67	1,45	1,28	1,73	1,43	1,31	1,18	1,05	0,94				
32			4,10			3,19	3,97	3,36	2,46	2,20	2,00	1,84				
40			4,51			3,51	4,38	3,70	2,46	2,20	2,00	1,84				
50			6,60			5,19	6,68	5,72	4,68	4,25	3,88	3,50				
63			6,60			5,19	6,68	5,72	4,68	4,25	3,88	3,50				

Course														
10	2	0 2	5 3	0 4	10	50	75	100	125	150	175	200		
mm														
0,8	3 0,6	35	0,	52 0	44 0),40								
	1,2	20	0,9	96 0,	,81 0),69	1,02	0,93	0,82	0,71	0,64	0,58		
	2,0	00	1,0	69 1.	45 1	,28	1,26	1,09	0,98	0,87	0,79	0,70		
		2,	04		1	,41	6,58	5,19	4,49	3,87	3,58	3,17		
		2,	47		1	,72	7,25	5,72	4,49	3,87	3,58	3,17		
		3,	22		2	2,22 1	10,17	8,58	7,75	6,86	5,99	5,30		
		3,	22		2	2,22 1	10,17	8,58	7,75	6,86	5,99	5,30		



Composants

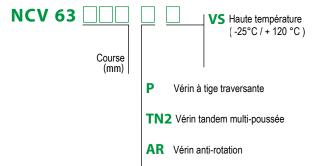
N°	Description	Matière
1	Joint	NBR
2	O-ring	NBR
3	Tringle	Acier chromé C40
4	Joint de tige	Polyuréthane
5	Bouchon avant	Aluminium
6	Plaque	Acier nickelé
7	Tige de Guide	Acier chromé & trempé C40
8	Douilles	Bronze
9	Semi-piston	Aluminium
10	Joint de piston	Polyuréthane
11	Corpo du cylindre	Aluminium
12	Semi-piston	Aluminium
13	Tête arrière	Aluminium

Vérins à corps plat

Série NCV

Tige : Acier

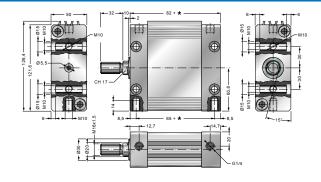
Tube: Aluminium anodisé


Tirants: Inox **Fonds**: Aluminium

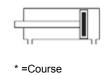
Températures de travail : -25°C à +120°C

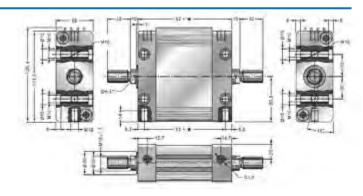
Lubrification: Non requise

Fluide : Air filtré

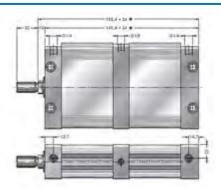

Pression maxi de travail: 10 bar

NCV 63





NCV 63 P



NCV 63 TN2

Alésage (mm) Ø25 25 Ø32 32 Ø40 40 Ø50 50 Ø63 63 Ø80 80 Ø100 100

final

0 Base **1** avec ajustement angulaire

Vérin arbre rotatif

Série CRW

Vérin avec arbre rotatif

Alésage: Ø 25, 32, 40, 50, 63, 80, 100 mm

Embout : Alliage d'aluminium

Arbre : Acier C45

Guide de l'arbre : Polymère acétalique

Piston : Aluminium avec joints en polyuréthane, muni d'aimant

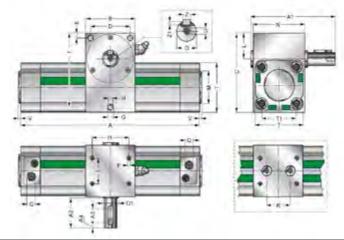
et de bague de guidage

Corps : Alliage d'aluminium **Joints** : Polyuréthane

Amortisseurs : Coussins pneumatiques réglables **Températures de travail** : -10°C à +80°C

Lubrification: Non requise

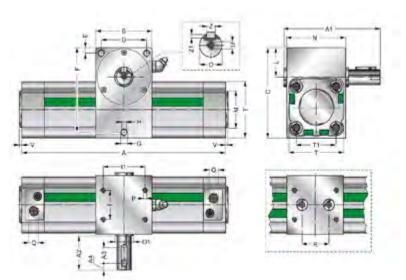

Fluide : Air filtré


Pression maxi de travail : 1 ÷ 10 bar

Alésage		Force de couple théorique														
Alcouge	1	2	3	4	5	6	7	8	9	10	Bar					
25	0.07	0.14	0,21	0,28	0,35	0.42	0.49	0.56	0.63	0.70	Kgm					
32	0.12	0.24	0,36	0,48	0.60	0.72	0.84	0.96			Kgm					
40	0,23	0,46	0,69	0,92	1,15	1,38	1,61	1,84	2,07	2,30	Kgm					
50	0,44	0.88	1,32	1,76	2,20	2,64	3,08	3,48	3,92	4,36	Kgm					
63	0,80	1,60	2,40	3,20	4,00	4,80	5,60	6,40	7,20	8,00	Kgm					
80	1,75	3,50	5,25	7,00	8,75	10,5	12,2	14,0	15,7	17,5	Kgm					
100	3,23	6,46	9,69	12,9	16,1	19,3	22,6	25,8	29,0	32,3	Kgm					

CRW 0 ..

Arbre cylindrique mâle



Alésage	90°	180°	360°	A1	A2	А3	Α4	В	С	D	Е	F	G	н		11	L	Ø M	N	0	01	Р	Q	R	т	T1	U	٧	z	Z 1
25	157	198	280	67	25	15	7	43	62	34	5	54.5		M6X8	25	16	22		40	Ø10	Ø12	M5X6	G1/8	20	40	26	M4X9		3	2
32	208	256	350	82	33	15	8	54	74	44	5	69	Ø5,2	M6X12	18	33	27	30	47	Ø14	Ø17	M6X10	G1/8	25	45	32,5	M5X12	4	5	3
40	237	294	407	91	33	15	8	60	84	46	7	77	Ø6,5	M8X15	22	40	30	35	56	Ø15	Ø17	M6X12	G1/4	25	54	38	M5X15	4	5	3
50	263	329	461	110	40	24	8	75	102	58	9	93	Ø6,5	M8X15	25	50	39	40	68	Ø18	Ø25	M8X12	G1/4	30	64	46,5	M6X15	4	6	3,5
63	307	389	552	124	44	29	8	85	116	69	8	108	Ø8,5	M10X15	35	60	43	45	78	Ø20	Ø30	M8X12	G3/8	40	75	56,5	M6X15	4	6	3,5
80	364	474	694	148	48	32	9	110	149	90	10	140	Ø10,5	M12X20	50	80	54	45	98	Ø25	Ø35	M10X15	G3/8	50	93	72	M4X15	4	8	4
100	403	532	792	177	60	40	10	120	172	96	12	160	Ø10,5	M12X20	60	80	60	55	115	Ø35	Ø50	M10X15	G1/2	60	110	89	M10X14	4	10	5

CRW 1 .. Arbre cylindrique femelle

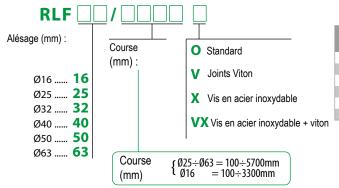
Alésage	90°	180°	360°	A1	В	С	D	E	F	G	н	ı	11	L	Ø M	N	01	Р	Q	R	т	T1	٧	s	S1	S2
25	157	198	280	42	43	62	34	5	54,5		M6X8	25	16	22		40	Ø12	M5X6	G1/8	20	40	26		3	9,4	8
32	208	256	350	49	54	74	44	5	69	Ø5,2	M6X12	18	33	27	30	47	Ø17	M6X10	G1/8	25	45	32,5	4	3	9,4	8
40	237	294	407	58	60	84	46	7	77	Ø6,5	M8X15	22	40	30	35	56	Ø17	M6X12	G1/4	25	54	38	4	3	11	10
50	263	329	461	70	75	102	58	9	93	Ø6,5	M8X15	25	50	39	40	68	Ø18	M8X12	G1/4	30	64	46,5	4	5	16	14
63	307	389	552	80	85	116	69	8	108	Ø8,5	M10X15	35	60	43	45	78	Ø20	M8X12	G3/8	40	75	56,5	4	6	23	20
80	364	474	694	100	110	149	90	10	140	Ø10,5	M12X20	60	80	54	45	98	Ø35	M10X15	G3/8	50	93	72	4	6	23	20
100	403	532	792	117	120	172	96	12	160	Ø10,5	M12X20	60	80	60	55	115	Ø50	M10X15	G1/2	60	110	89	4	8	28	25

Unités de translation

Série RLF

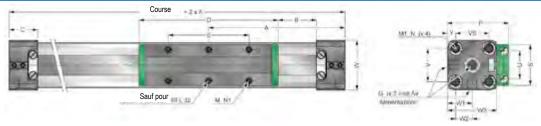
Embouts : Aluminium anodisé Corps : Aluminium anodisé Joint : NBR standard Navette : Aluminium anodisé

Bande d'étanchéité : Acier inoxydable

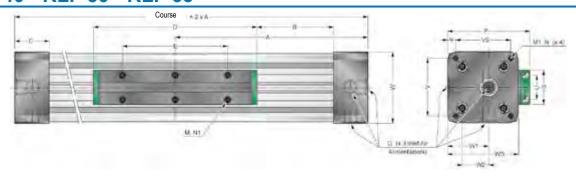

Amortisseur: Pneumatique

Températures ambiante : -15°C à +80°C Plage de température moyenne : 0°C à +40°C

Lubrification: Non requise

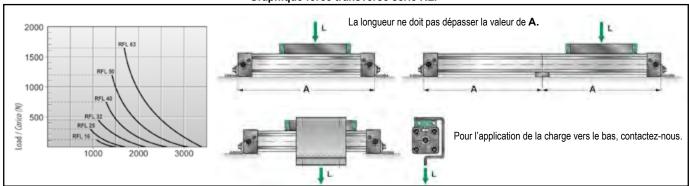

Fluide : Air filtré

Pression maxi de travail: 0.5 à 8 bar



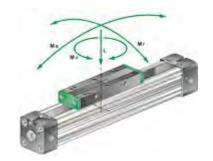
Longueur effective	de l'amortisseur
Alésage	Longueur
16	15
25	21
32	26
40	32
50	32
63	40

RLF 16 - RLF 25 - RLF 32


RLF 40 - RLF 50 - RLF 63

Alésage	Α	В	С	D	Е	G	М	M1	N	N1	Р	S	U	٧	VS	W	WS	W1	W2	Υ
									m	m										
16	65	15.5	15	69	36	M5	M3	M4	7	7	36.5	22	16.5	18	18	27	27	13.5	17.1	4.5
25	100	21.5	23	111	65	G1/8	M5	M5	12	8	52.5	33	25	27	27	40	40	20	25.8	6.5
32	125	21	27	152	90	G1/4	M6	M6	14	7.5	66.5	36	27	36	40	52	56	30	39	8
40	150	44	30	152	90	G1/4	M6	M6	17	10	80	36.4	27	54	54	72	69	36	48.8	9
50	175	42	33	201	110	G1/4	M6	M6	15	10	89	56	27	70	70	80	80	44.5	44.5	5
63	215	48.5	50	233	155	G3/8	M8	M8	17	14	123	50	36	78	78	106	106	62.5	48.8	14.5

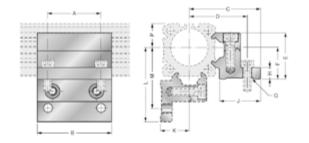
Graphique force transverse série RLF



Forces et couple

Les valeurs ci-dessous sont les valeurs maximales applicables avec une vitesse de 0,45 m/s et pression maxi de 6 bar. Eviter tout dépassement de ces des valeurs même pour de courts instants.

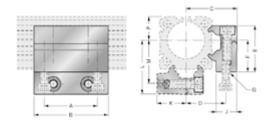
En cas de situation non évoquée, les valeurs maximales doivent être réduites de 20%.


Vérin	Force de poussée (N)	Charge maxi ad- missible	Moments de flexion maxi autorisés	Couple maxi admissible	
Ø	(6 bar)	L	Ma Axial	Mr radial	M _V central
16	110	120	4	0.45	0.5
25	250	300	15	1.5	3
32	420	450	30	3	4.5
40	640	750	60	6	8
50	1000	1200	115	10	15
63	1550	1650	200	12	24

Accessoires de fixation RLMW-..

Support intermédiaire

Alésage	Α	В	С	D	E	F	G	Н	J	K	L	М	Р
						n	ım						
25	36	50	47.5	40	31.3	22	Ø5.5	10	26	20	49.5	42	16
32	36	50	54.6	46	39	30	Ø6.5	10	28.5	27.6	61	52.5	21.5



Accessoires de fixation RLMG-..

Support intermédiaire

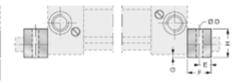
Alésage	Α	В	С	D	Е	F	G	J	K	L	М	Р	
mm													
25	36	50	34.5	27	31.3	22	M5	14	20	36.5	29	16	
32	36	50	40.6	33	39	30	M6	14	27.6	47	39.5	21.5	

Accessoires de fixation RLP-...

Support pour pied

Alésage	Α	В	С	ØD	Е	F	G	Н				
mm												
16	1.6	18	26	3.6	4.0	14	1.5	12.5				
25	2.5	27	40	5.5	6.0	22	2	18				

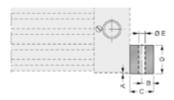
Interrupteurs magnétiques pour vérins RL

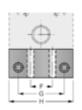


	Code	Voltage V	Courant de commutation mA	Capacité de commutation VA	Degré de protec- tion	T° de travail °C	Durée ON -	Durée OFF -	Vie électrique impulsion
ı				mm					
ĺ	ZRS 11	5 -130 AC-DC	200	6	IP67	-15 à +60	1 msec	0,3 msec	10 ⁷

Accessoires de fixation RLQ-..

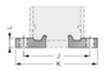
Support pour pied carré




Alésage	Α	В	С	ØD	E	F	G	н
			n	ım				
32	20	36	51	6.6	6.0	24	4	20
40	30	54	71	9.0	11.5	24	2	20

Accessoires de fixation RLQ-..

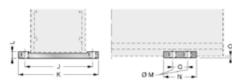
Support pour pied carré




Alésage	Α	В	С	D	ØE	F	G	Н
			mı	m				
50	2.0	12.5	25	25	9	40	70	84.5
63	2.5	15	30	40	11	48	78	105

Accessoires de fixation RLMI-..

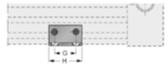
Support intermédiaire



Alésage	J	K	L	ØM	N	0
			nm			
16	36	40	6	3.5	12	3
25	48	60	6	5.5	20	4

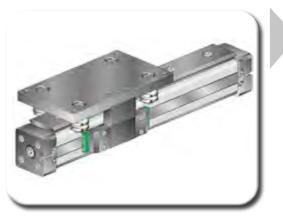
Accessoires de fixation RLMU-..

Support intermédiaire


Alésage	J	K	L mn	ØM n	N	0	Q	
32	61	73	10	6.5	55	6	40	
40	70	85	10	6.5	60	7.2	45	

Accessoires de fixation RLML-..

Support intermédiaire



Alésage	J	K		ØM m	N	0	Q	Н
50	5	3.5	35	118	146	6.6	30	45
63	5	4	35	147	172	6.6	30	45

Ø40 **40**

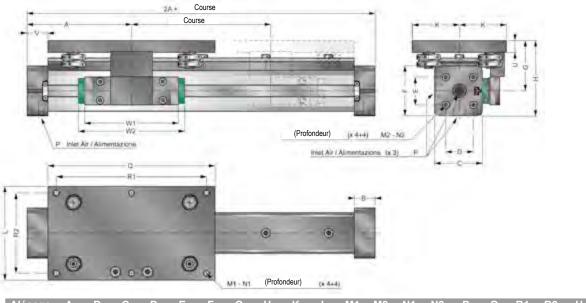
Unités de translation

Série RLFR

Embouts: Aluminium anodisé Corps: Aluminium anodisé Joint: NBR standard Navette: Aluminium anodisé

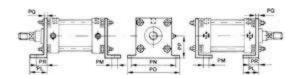
Bande d'étanchéité : Acier inoxydable

Amortisseur: Pneumatique


Températures ambiante :-15°C à +80°C Plage de température moyenne : 0°C à +40°C

Lubrification: Non requise

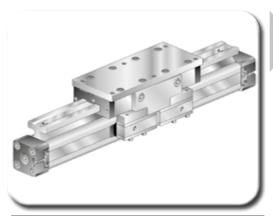
Fluide : Air filtré


Pression maxi de travail: 0.5 à 8 bar

Longueur effective	de l'amortisseur
Alésage	Longueur
25	21
32	26
40	32

Alésage	Α	В	С	D	Е	F	G	Н	K	L	M1	M2	N1	N2	Р	Q	R1	R2	U	V	W1	W2
											mm											
25	100	23	40	27	27	40	53.5	73.5	40	80	M6	M5	11.5	11	G1/8	135	120	65	11.5	32.5	102	112
32	125	27	56	40	36	52	64	90	58	116	M8	M6	14.5	15	G1/4	180	160	96	14.5	35	135	152
40	150	30	69	54	54	72	72.5	108.5	67.5	135	M8	M6	16.5	15	G1/4	240	216	115	17.5	30	135	152

Forces et couple RLFR../.....


Charges combinées

Les contraintes combinées des forces et des couples peuvent être calculés en utilisant la formule suivante:

$$\frac{M_a}{M_{a \max}} + \frac{M_r}{M_{r \max}} + \frac{M_v}{M_{v \max}} + \frac{L}{L_{\max}} \le 1$$

Vérin	Force de poussée (N)	Charge maxi admissible	Moments maxi autoi		Couple maxi admissible
Ø	(6 bar)	L	Ma Axial	M _r radial	M _V central
25	250	1400	50	14	50
32	420	3100	165	65	165
40	640	3100	250	90	250

Longueur effective de l'amortisseur Alésage Longueur 16 15 25 21 32 26 40 32

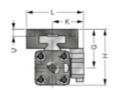
Unités de translation

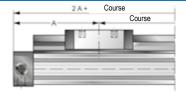
Série RLFG

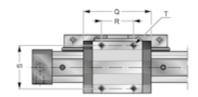
Embouts : Aluminium anodisé Corps : Aluminium anodisé Joint : NBR standard Navette : Aluminium anodisé

Bande d'étanchéité : Acier inoxydable

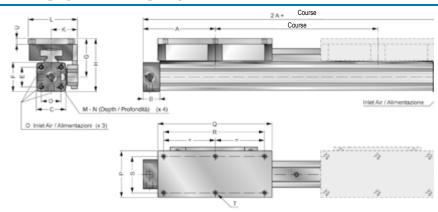
Amortisseur: Pneumatique

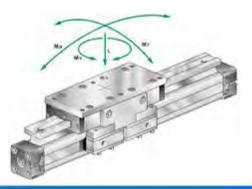

Températures ambiante : -15°C à +80°C Plage de température moyenne : 0°C à +40°C


Lubrification: Non requise


Fluide: Air filtré

Pression maxi de travail: 0.5 à 8 bar


RLFG 16



RLFG 25 - RLFG 32 - RLFG 40

Ø Piston	A	В	С	D	Е	F	G	н	K mm	L	M1	N	0	Р	Q	R	s	т	U
16	65	15	27	18	18	27	44	57.5	27.5	51	М3	7	M5	47	68	30	38	M5	8
25	100	23	40	27	27	40	56.5	76.5	38	71	M5	11	G1/8	66	162	148	53	M6	8
32	125	27	52	36	40	52	62.5	88.5	52.5	84	M6	14	G1/4	66	162	148	53	M6	8
40	150	30	69	54	54	72	66.9	102.8	61	96	M6	23	G1/4	70	162	148	53	M6	8

Forces et couple RLFG../....

Charges combinées

Les contraintes combinées des forces et des couples peuvent être calculés en utilisant la formule suivante:

$$\frac{M_a}{M_{a \max}} + \frac{M_r}{M_{r \max}} + \frac{M_v}{M_{v \max}} + \frac{L}{L_{\max}} \le 1$$

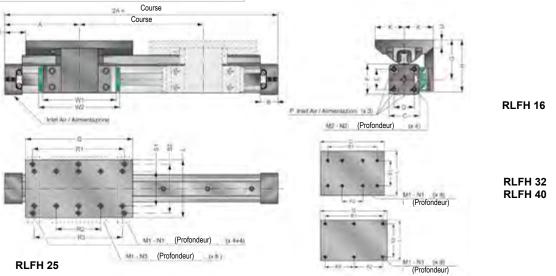
Vérin	Force de poussée (N)	Charge maxi ad- missible	Moments d maxi autor		Couple maxi admissible
Ø	(6 bar)	L	Ma Axial	M _r radial	M _V central
16	110	350	6	4	6
25	250	1000	40	14	40
32	420	2000	68	24	68
40	640	2800	103	37	103

Unités de translation

Série RLFH

Embouts: Aluminium anodisé Corps: Aluminium anodisé Joint: NBR standard Navette: Aluminium anodisé

Bande d'étanchéité : Acier inoxydable


Amortisseur: Pneumatique

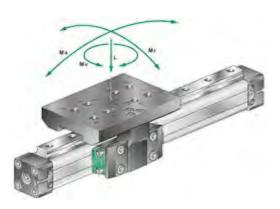
Températures ambiante : -15°C à +80°C Plage de température moyenne : 0°C à +40°C

Lubrification: Non requise

Fluide : Air filtré

Pression maxi de travail: 0.5 à 8 bar

Alésage	A	В	С	D	Е	F	G	н	K	L	M1	M2 m		N2	N3	Р	Q	R1	R2	R3	S 1	S2	U	V	W1	W2
16	65	15	27	18	18	27	35	48.5	31.5	63.0	M4	M3	10	7	-	M5	90	70	30	-	36	-	10	28.5	60	69
25	100	23	40	27	27	40	53	73	40	80	M6	M5	12	11	10	G1/8	145	125	60	120	50	64	11	27.5	102	112
32	125	27	52	36	40	52	64	90	57.5	115	M8	M6	13	15	-	G1/4	190	164	82	-	-	96	10	30	135	152
40	150	30	69	54	54	72	69.2	105.1	57.5	115	M8	M6	18	15	-	G1/4	190	164	82	-	-	96	10	55	135	152



Forces et couple RLFH../.....

Charges combinées

Les contraintes combinées des forces et des couples peuvent être calculés en utilisant la formule suivante :

M_{a max} $M_{r \, max}$ M_{v max} Coulissant avec un patin de conduite Charge maxi admissible Force de poussée (N) Moments de flexion maxi autorisés (Nm (6 bar) Mr rad 16 110 500 11 25 250 1500 40

Coulissant avec **deux** patin de conduite

420

Vérin	Force de poussée (N)	Charge maxi admissible	Moments of maxi autor		Couple maxi ad- missible
Ø	(6 bar)	L	Ma Axial	Mr radial	My central
16	110	500	8	10	18
25	250	1550	85	20	80
32	420	3020	85	45	90
40	640	4030	130	65	100

61

62 70

30

Unités de translation

Série TM

Cylindre magnétique sans tige

Scellement : Polyuréthane Amortisseur : Pneumatique

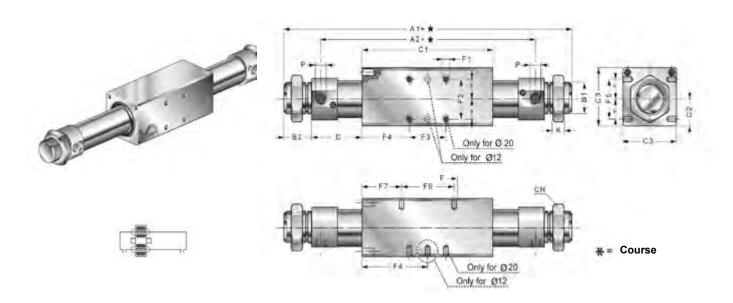
Corps: Acier inoxydableX5 Cr Ni 18-10.
Températures ambiante: -15°C à +80°C
Plage de température moyenne: 0°C à +40°C

Lubrification: Non requise

Fluide : Air filtré

Pression maxi de travail: 0.5 à 8 bar

Alésage Course standard														
1	Alesaye Ø	25	50	80	100	125	160	200	250	300	350	400	450	500
1	, D							mm						
	12	•	•	•	•	•	•	•	•	•	•	•	•	•
	20	•	•	•	•	•	•	•	•	•	•	•	•	•


Le vérin série Vesta «TM» est une unité dans laquelle la liaison entre le piston et le curseur est réalisée au moyen d'un champ magnétique de haute intensité.

Il est dépourvu de tige et par conséquent, est de dimensions très contenues. Il est livré en standard avec coussin d'air pour Ø20 et Ø12.

Il est conçu pour une utilisation avec des capteurs magnétiques sur demande pour détecter la position du curseur.

TM /

Vérin sans tige

Alésag	e A1	A2	B1	В2	C1	C2	C3	D	F	F1	F2	F3	F4	F5	F6	F7	К	СН	Р
12	156	115	M16X1,5	15	86	15	35	20	М3	M5	22	0	43	16	30	28	8	24	M5
20	214	162	M22X1,5	18	110	20	45	35	M5	M5	32	32	39	30	43	33,5	10	30	G1/8

ChapesAutres vérins

Matériaux : Acier zingué

Inox

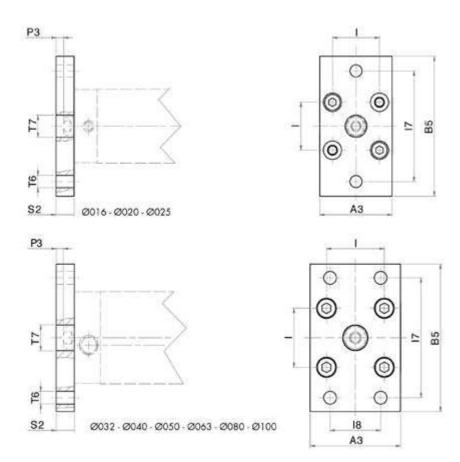
Version Acier

MCFI/..

		Dimensio	ns	
CODE	47.MCFI.032	47.MCFI.040	47.MCFI.050	47.MCFI.063
Ø mm	32	40	50	63
Α	40	50	54	65
A1	18	21,6	26,4	31,5
A2	6	7	9	13
A3	6	7	8,5	8,5
В	24	30	34	35
С	20	28	36	42
D	20	27	30	34
E	35	40	45	50
F	38,1	46,1	57,1	70,1
G	4	5	6	6
G1	4	5	6	6
Н	12	15	18	20
H1	10	12	14	16
H2	M8x1	M10x1	M12x1,5	M14x1,5
Н3	15	20	23	23
H4	10	12	14	16
H5	13	17	19	19
- 1	7	9	9	9
L	8	10	10	15
P	12	13	14	16
Q	4	5	6	6

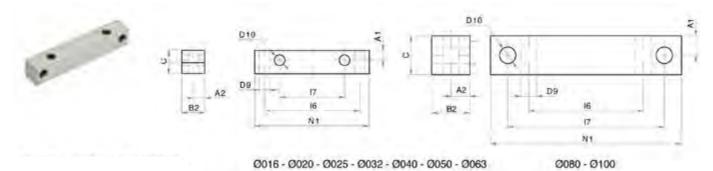
MPE/..

Pivots (2 pièces)


		Dimension	S	
CODE	47.MPE.032	47.MPE.040	47.MPE.050	47.MPE.063
Ø mm	32	40	50	63
Α	M8x1	M10x1	M12x1,5	M14x1,5
D	8	9,5	11	13
E	14	16,5	20	28
F	10	12	14	16
I	5	6	6	8
Н	51	61	75	92

FI/..

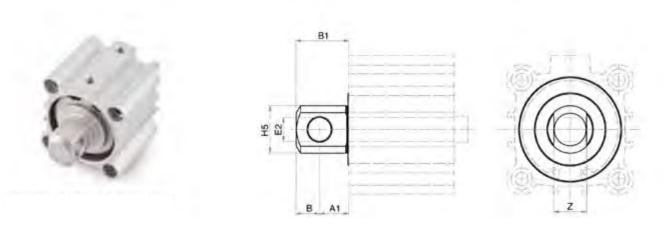
Bride UNITOP


Matériau : Acier zingué

				Dim	ensions				
CODE	47.FI.016	47.FI.020	47.FI.025	47.FU.032	47.FU.040	47.FU.050	47.FU.063	47.FU.080	47.FU.100
Ø	016	020	025	032	040	050	063	080	100
A3	29	36	40	50	60	68	87	107	128
B5	55	70	76	80	102	110	130	160	190
17	43	55	60	65	82	90	110	135	163
18	-	-	-	32	36	45	50	63	75
I	18	22	26	32	42	50	62	82	103
Ø T6	5,5	6,5	6,5	7	9	9	9	12	14
Ø T7	10	12	12	14	14	18	18	23	28
P3	5,5	5,5	4,5	4	3,5	4,5	7,5	7	5
S2	10	10	10	10	10	12	15	15	15

FPD/..

Montage sur pattes - Série F



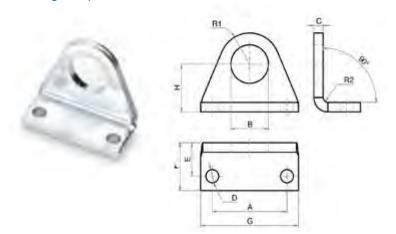
Matériau : Aluminium

				Din	nensions				
CODE	47.FPD.016	47.FPD.020	47.FPD.025	47.FPD.032	47.FPD.040	47.FPD.050	47.FPD.063	47.FPD.080	47.FPD.100
Ø	016	020	025	032	040	050	063	080	100
A1	3	5	6	5	5,5	7,5	6	9	9,5
A2	5	5	6	6	6	7,5	7,5	10	10
B2	10	10	12	12	12	15	15	20	20
С	10	10	12	12	12	15	15	20	20
E1	17	18	20	24	27,5	32,5	40	50	62
F2	5	5	7,5	5	5	5	7,5	20	22
16	30	40	45	50	60	70	85	60	80
17	20	25,5	28	34	42	50	62	82	103
N1	40	50	60	60	70	80	100	100	124
Ø D10	3,5	5,5	5,5	5,5	5,5	5,5	8,5	8,5	10,5
Ø D9	3.5	5.5	5,5	5,5	5.5	6.5	8.5	8.5	10.5

FCP/..

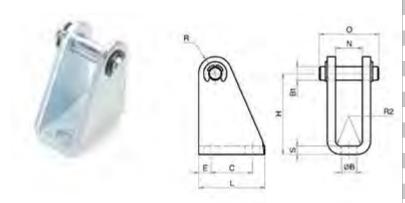
Charnière mâle

				Dim	ensions				
CODE	47.FCP.016	47.FCP.020	47.FCP.025	47.FCP.032	47.FCP.040	47.FCP.050	47.FCP.063	47.FCP.080	47.FCP.100
Ø	016	020	025	032	040	050	063	080	100
A1	8	10	10	13	15	15	19	19	23
B1	14	18	18	23	27	27	35	35	43
В	6	8	8	10	12	12	16	16	20
Ø E2	6	8	8	10	12	12	16	16	20
Ø H5	12	16	16	20	24	24	32	32	40
Z	7	9	9	14	16	17	22	22	26

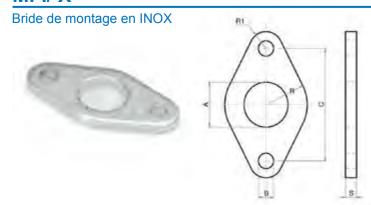


Version Inox

MPBI/ X


Montage de pied en INOX

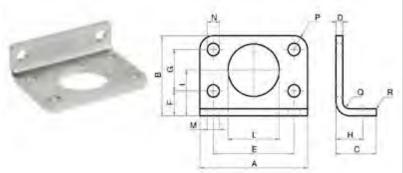
	Dimensions						
CODE	47.MPBIX.008010	47.MPBIX.012016	47.MPBIX.020025				
Ø	8 - 10	12 - 16	20 - 25				
Α	25	32	40				
В	12	16,1	22,1				
С	3	4	5				
D	4,5	5,5	6,6				
E	11	14	17				
F	16	20	25				
G	35	42	54				
Н	16	20	25				
R1	10	13	20				
R2	1,5	2	2,5				


MCFI/ X

Charnière arrière montage horizontal en INOX

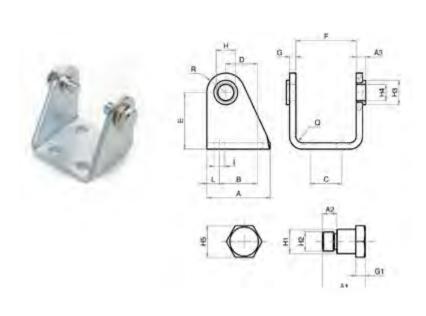
	D	imensions	
CODE	47.MCFIX.008010	47.MCFIX.012016	47.MCFIX.020025
Ø	8 - 10	12 - 16	20 - 25
B1	4	6	8
В	4,5	5,5	6,6
С	12,5	15	20
E	3,75	5	6
H1	10	12	14
H2	M8x1	M10x1	M12x1,5
Н3	15	20	23
H4	10	12	14
H5	13	17	19
Н	24	27	30
Н	12	15	18
ı	7	9	9
L	8	10	10
L	20	25	32
N	8,1	12,1	16,1
0	18	24	31
P	12	13	14
Q	4	5	6
R2	1,5	1,5	2
R	5	7	10
S	2,5	3	4

MFI/ X

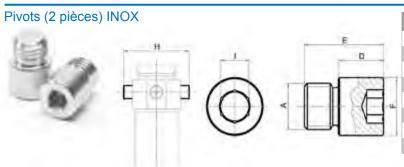


	Dimensions						
CODE	47.MFIX.008010	47.MFIX.012016	47.MFIX.020025				
Ø	8 - 10	12 - 16	20 - 25				
Α	12	16	22				
В	4,5	5,5	6,5				
С	30	40	50				
R	11	15	20				
R1	5	6	8				
S	3	4	5				

MPBI/ X


Equerre de fixation INOX

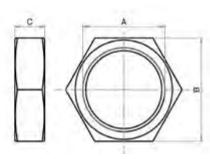
		Dimensio	าร	
CODE	47.MPBIX.032	47.MPBIX.040	47.MPBIX.050	47.MPBIX.063
Ø	32	40	50	63
Α	66	80	90	96
В	49	58	70	80
С	21	30	30	30
D	4	5	6	6
E	52	60	70	76
F	14	18	20	20
G	28	30	40	50
Н	14	20	20	20
I	28	33	40	45
L	30	38	45	45
M	7	9	9	9
N	7	9	9	9
Р	7	10	10	10
Q	4	5	6	6
R	2	2	2	2


MCFI/ X

Charnière avec vis INOX

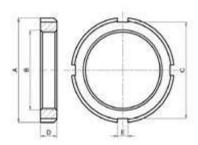
		Dimensio	าร	
CODE	47.MCFI.032X	47.MCFI.040X	47.MCFI.050X	47.MCFI.063X
Ø	32	40	50	63
Α	40	50	54	65
A1	18	21,6	26,4	31,5
A2	6	7	9	13
A3	6	7	8,5	8,5
В	24	30	34	35
С	20	28	36	42
D	20	27	30	34
E	35	40	45	50
F	38,1	46,1	57,1	70,1
G	4	5	6	6
G1	4	5	6	6
Н	12	15	18	20
H1	10	12	14	16
H2	M8x1	M10x1	M12x1,5	M14x1,5
Н3	15	20	23	23
H4	10	12	14	16
H5	13	17	19	19
ı	7	9	9	9
L	8	10	10	15
Р	12	13	14	16
Q	4	5	6	6

MPEX/ X



	Dimensions						
CODE	47.MPEX.032	47.MPEX.040	47.MPEX.050	47.MPEX.063			
Ø	32	40	50	63			
Α	M8x1	M10x1	M12x1,5	M14x1,5			
D	8	9,5	11	13			
E	14	16,5	20	28			
F	10	12	14	16			
<i>l</i> 1	5	6	6	8			
Н	51	61	75	92			

DAT/ X Ecrou INOX

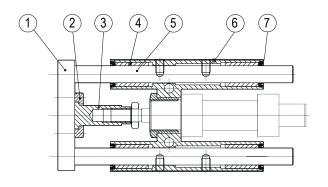


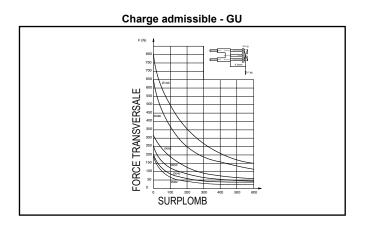
		Dimensions	
COD.	47.DATX.008010	47.DATX.012016	47.DATX.020025
Ø	8-10	12-16	20-25
Α	M12x1,25	M16x1,5	M22x1,5
В	19	22	27
С	7	5	8

GHI/ X

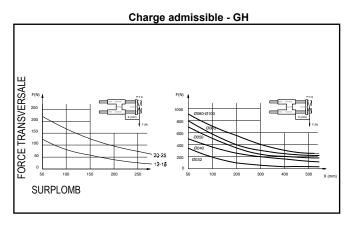
Ecrou rainuré INOX

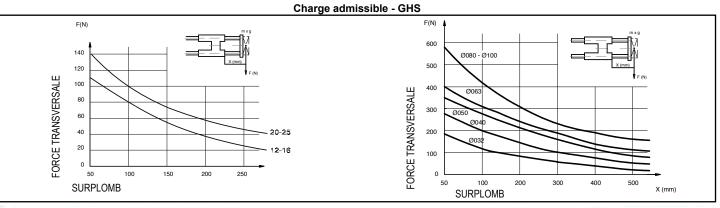
		Dimensions	
COD.	47.GHIX.032	47.GHIX.040	47.GHIX.050
Ø	32	40	50 - 63
Α	45	50	58
В	M30x1,5	M38x1,5	M45x1,5
С	40	46	52
D	7	8	9
E	5	5	6



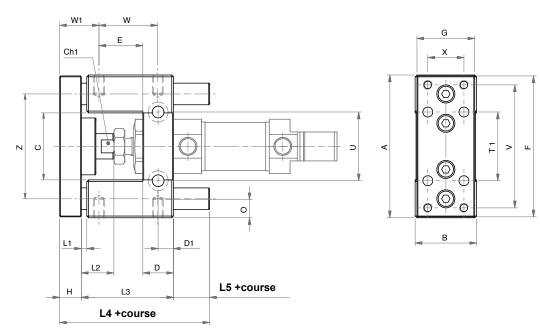

Unités de guidage Séries GU GH

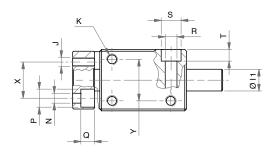
	Caractéristiques						
1	Plaque	Aluminium anodisé					
2	Ecrou	Acier zingué					
3	Raccord	Bronze					
4	Palier	Bronze					
5	Tiges	Acier chromé					
6	Corps	Aluminium anodisé					
7	Joints	NBR					


G	H)	(050	100	S
			Alésage (Ø)	Course (mm)	Accouplement
					S Court
					L Long
	Ver	sion			
	Н	Typ ave	e H c bague bronze		
	нх			et tige en acier	inoxydable AISI 303
	нѕ			illes et tige en ad	cier chromé
	U	Тур	e U		

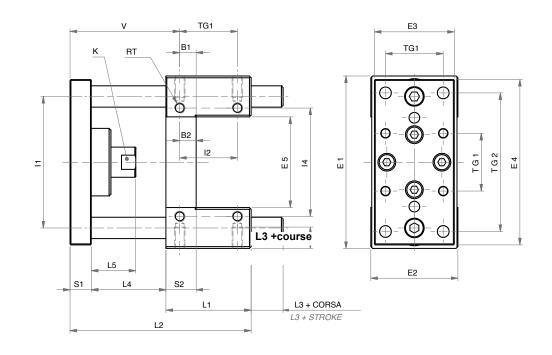

avec bague bronze

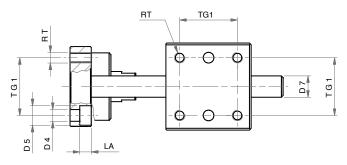
avec bague bronze et tige en acier inoxydable AISI 303





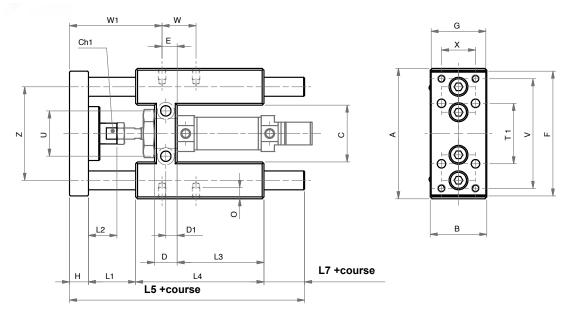
Unités de guidage Série GU

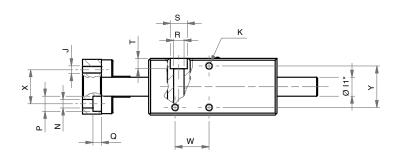




Ø	Α	В	С	CH1	D	D1	Е	F	G	Н	Ø I1	J	K	L1	L2	L3
12-16	69	30	30	8	12	6	19	66	29	10	10	M4	M4	3	15	38
20-25	79	34	37	12	17	8.5	24.25	78	38	12	12	M5	M6	3	18	48

Ø	L4	L5	N	0	Р	Q	R	S	Т	T1	U	V	W	W1	Х	Υ	Z
12-16	66.5	15.5	4.5	6	8	4.5	5.5	9	5.5	32	24	58	25	20	18	22	49.5
20-25	83	20	5.5	9	10	7.5	6.5	11	6.5	38	38	68	32.5	21.75	20	23	58

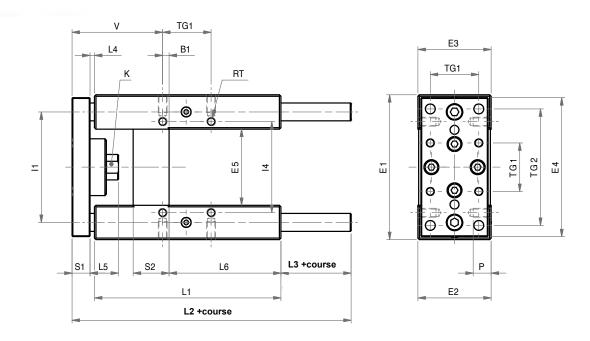

Ø	B1	B2	D4	D5	D7	E1	E2	E3	E4	E5	I 1	12	14	K
32	9,25	9,25	6,6	11	12	97	49	45	93	51	74	32,5	61	15
40	11	11	6,6	11	16	115	58	55	112	58,2	87	38	69	15
50	18,8	18,8	9	15	20	137	70	65	134	70,2	104	46,5	85	20
63	15,3	15,3	9	15	20	152	85	80	147	85,2	119	56,5	100	20
80	25	14	11	18	25	189	105	100	180	105,5	148	50	130	26
100	28,5	19	10,5	16,5	25	213	130	120	206	130,5	173	70	150	26

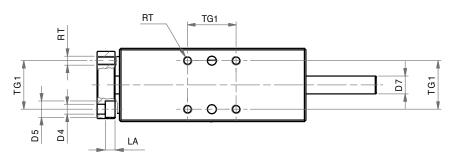

Ø	K	L1	L2	L3	L4	L5	LA	Р	RT	S1	S2	TG1	TG2	V
32	15	48	102	18	42	25	6,5	12	M6	12	17	32,5	78	61,75
40	15	58	113	17	43	25	6,5	12	M6	12	21	38	84	65
50	20	59	123	20	49	29	8,5	16	M8	15	25	46,5	100	70,2
63	20	76	140	21	49	29	9	16	M8	15	25	56,5	105	73,7
80	26	90	163	30	53	37	11	20	M10	20	34	72	130	82
100	26	110	184	30	54	37	11	20	M10	20	39	89	150	84,5

Unités de guidage Série GH

- *: Øl1 pour unité de guidage avec bague bronze *: Øl2 pour unité de guidage avec roulement à billes

Réglage long


	Ø	L1	L2	W1
Г	12-16	25	18	49
	20-25	25	40	72


Réglage court

Ø	Α	В	С	CH1	D	D1	Е	F	G	Н	ØI1	ØI2	J	K	L1	L2	L3
12-16	69	30	30	8	12	6	8	66	29	10	10	8	M4	M4	22	15	46
20-25	79	34	37	12	17	8.5	15	78	32	12	12	10	M5	M6	3	18	58

Ø	L4	L5	L7	N	0	Р	Q	R	S	T	T1	U	V	W	W1	X	Υ	Z
12-16	68	124.5	21.5	4.5	6	8	4.5	5.5	9	5.5	32	30	58	18	46	18	22	49.5
20-25	108	166	21	5.5	9	10	7.5	6.5	11	6.5	38	37	68	32.5	50	20	23	58

- *: Øl1 pour unité de guidage avec bague bronze
 *: Øl2 pour unité de guidage avec roulement à billes

Réglage long

Ø	L4	L5	L3	W1
32	25	42	25	82,7
40	25	42	30	86
50	25	50	35	91,2
63	25	50	25	96,7
80	25	50	27	104
100	25	50	27	105

Réglage court

Ø	B1	D4	D5	D7	E1	E2	E3	E4	E5	l1	14	K	L1	L2	L3	L4	L5	L6	LA	Р	RT	S 1	S2	TG1	TG2	V
32	4,3	6,6	11	12	97	49	45	93	51	74	61	15	125	187	47	3	19,1	75	6,5	12	M6	12	24	32,5	78	60,7
40	11	6,6	11	16	115	58	55	112	58,2	87	69	15	140	207	52	3	24	80	6,5	12	M6	12	28	38	84	64
50	18,8	9	15	20	137	70	65	134	70,2	104	85	20	148	223	57	3	27	78	8,5	16	M8	15	34	46,5	100	69,2
63	15,3	9	15	20	152	85	80	147	85,2	119	100	20	178	243	47	3	27	106	9	16	M8	15	34	56,5	105	74,7
80	25	11	18	25	189	105	100	180	105,5	148	130	26	195	267	49	3	27	111	11	20	M10	20	50	72	130	82
100	30	11	18	25	213	130	120	206	130,5	173	150	26	218	290	49	3	27	128	11	20	M10	20	55	89	150	83

Vérins pneumatiques avec bloqueur de tige intégré Série RW

Alésage : Ø32, 40, 50, 63, 80,100 mm

Courses: 25, 50, 80, 100, 125, 160, 200, 250, 300, 350, 400,

450, 500

Embout : Alliage d'aluminium

Tige: Acier chromé Cr45, acier inox chromé AISI 304

Tirants : Inox

Corps : Aluminium anodisé

Joints: NBR

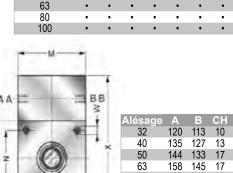
Températures de travail : -10°C à +80°C

Lubrification: Non requise

Fluide : Air filtré

Alésage

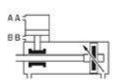
Ø


32 40 50

Pression maxi de travail: 7 bar

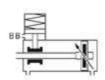
RW

			Ø80 80 Ø100 100
- G H]	- r+	e•*-	•
		*=	- F -courses
	€ .		


Alésage	Α	В	CH	D	E	F	G	н
32	120	113	10	30	12	M10x1,25	20	7
40	135	127	13	35	16	M12x1,25	24	8
50	144	133	17	40	20	M16x1,5	32	11
63	158	145	17	45	20	M16x1,5	32	13
80	194	178	21	45	25	M20x1,5	40	16
100	214	193	26	55	30	M20x1,5	40	21

80 100 125 160 200 250 300 350 400 450 500

Alésage	L	М	N	Р	S	T	U	V	W	Х	Υ	Z
32	4	50	32,5	G1/8	2	40	19	25	M6	89	G1/8	20
40	4	55	38	G1/4	2	45	16	35	M6	99	G1/8	26
50	4	65	46,5	G1/4	4	45	20	35	M8	109	G1/8	30
63	4	80	56,5	G3/8	2	50	20	35	M8	129	G1/8	40
80	4	100	72	G3/8	8	60	28		M10		G1/8	50
100	4	115	89	G1/2	8	65	30	55	M10	179	G1/8	65


RWD-...-

Frein double effet

RWS-...-

Frein simple effet

Tolérances d'arrêt

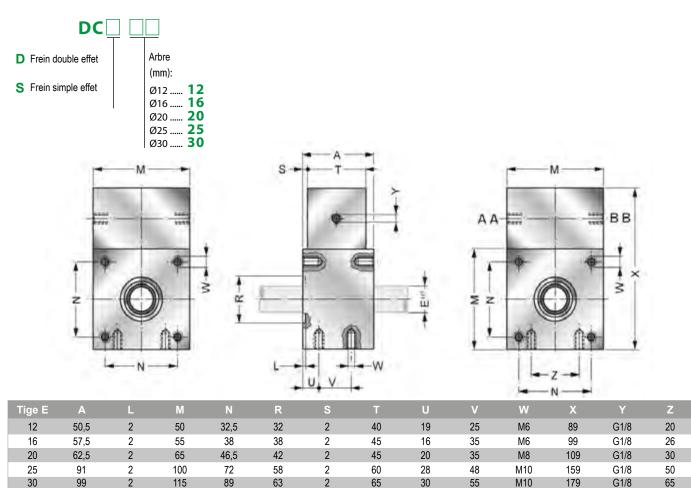
Vitesse	RWD	RWS
50 mm/s	*/- 0,3 mm	*/- 0,3 mm
100 mm/s	*/- 0,5 mm	*/- 0,3 mm
150 mm/s		

Bloqueur de tige

Série DC

Dispositif de freinage

Alésage: Ø12, 16, 20, 25, 30 mm Matériau: Alliage d'aluminium

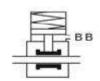

Joints: NBR

Températures de travail : -10°C à +80°C

Lubrification: Non requise

Fluide : Air filtré

Pression maxi de travail: 2 ÷ 7 bar



30 99 2 115 89 63 2 65 30 55 M10

DCD-...-...
Frein double effet

DCS-...-...
Frein simple effet

Tolérances d'arrêt

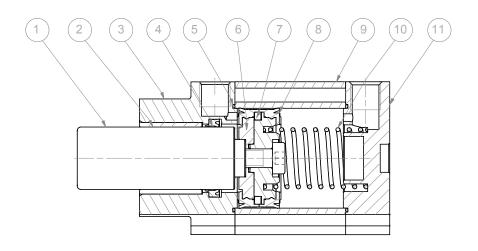
50 mm/s	*/- 0,3 mm	*/- 0,8 mm
100 mm/s	*/- 0,5 mm	*/- 1,2 mm
150 mm/s		

DCD

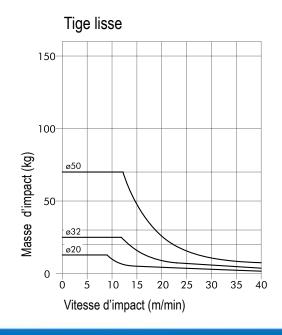
Vitesse

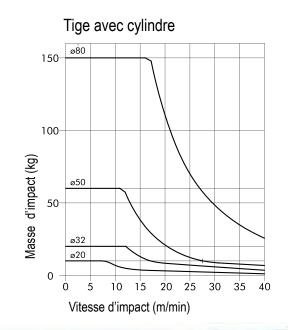
DCS

Vérins stoppeurs Série ST


Alésage: Ø20, 32, 50, 80 mm

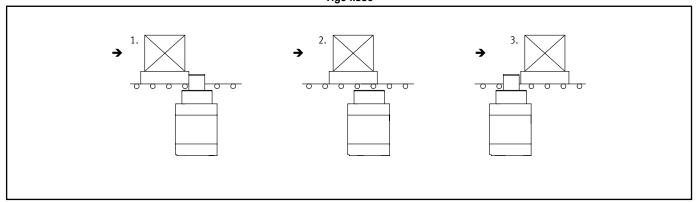
Courses: 15-20-30


Températures de travail : 0°C à +80°C (-20°C air sec)


Fluide: Air compressé, filtré, sans lubrification Pression de travail : 2-10 bar (simple effet)

1	Tige: acier inox chromé
2	Bague : acier + PTFE
3-11	Couvercles: aluminium anodisé
4-5-8	Joints: polyurethane, nbr
6	Piston: aluminium
7	Aimant : caoutchouc
9	Tube : aluminium anodisé
10	Ressort : acier
	Vis: acier zingué
	Amortisseur : élastique

Charge admissible



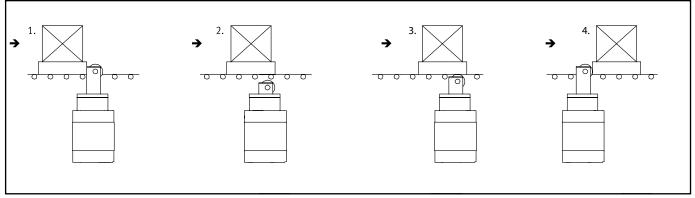
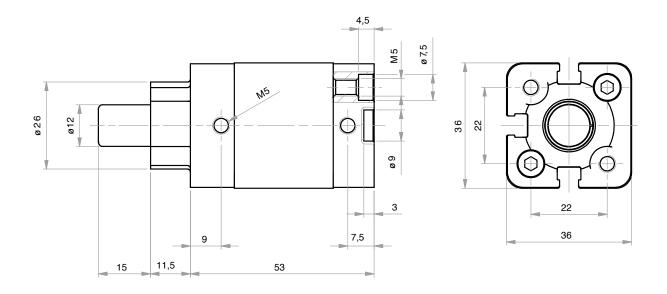


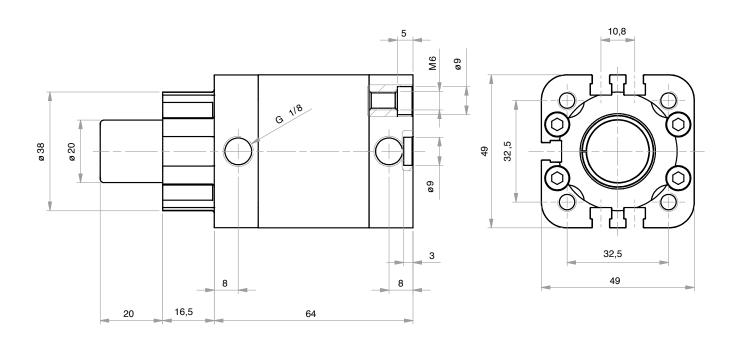
Schéma de fonctionnement

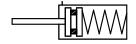
Tige lisse

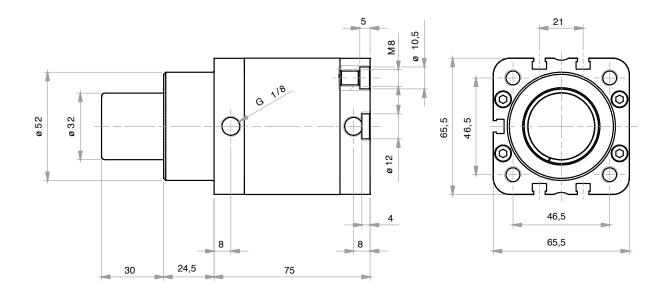
Tige avec cylindre

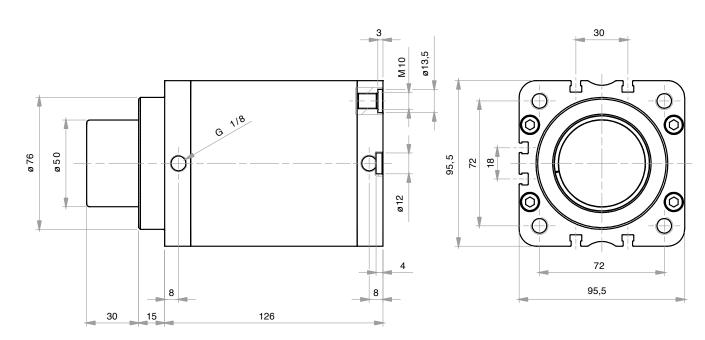
Force théorique ressort


			Ø	020	032	050	080
AST	рет	Charge maxi	N	36	51	78	187
ASI	гот	Charge mini	N	28	36	49	133


Vérins stoppeurs : PST- L Tige lisse

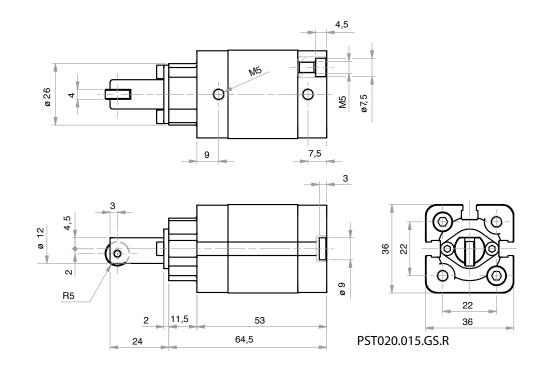

PST020.015.GS.L

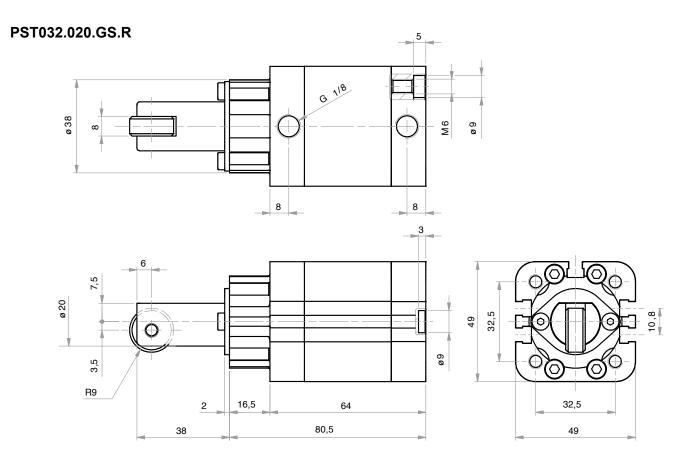

PST032.020.GS.L



PST050.030.GS.L

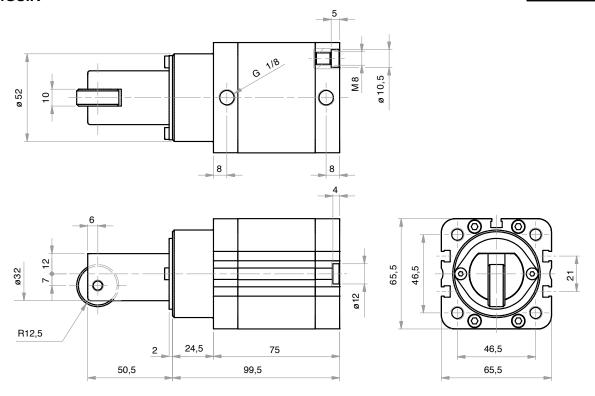
PST080.030.GS.L

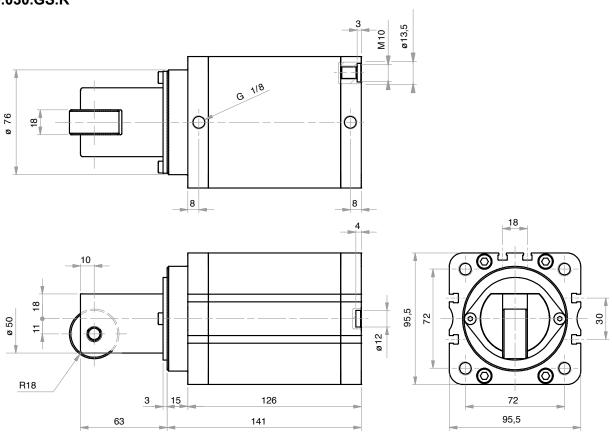




Vérins stoppeurs : PST- R Tige avec cylindre

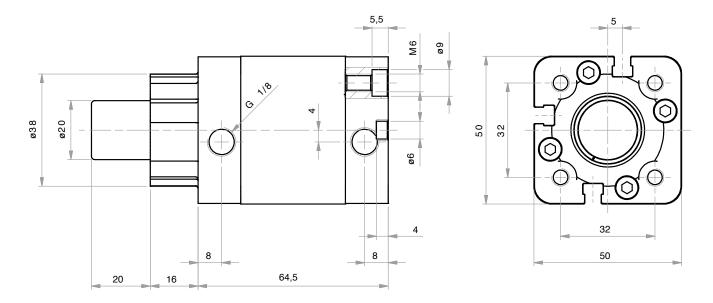
PST020.015.GS.R

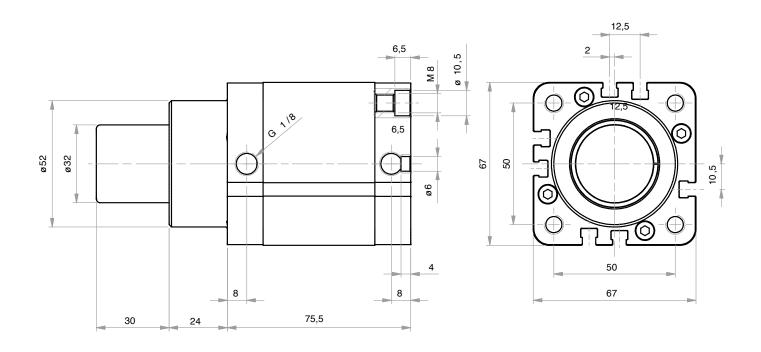




PST050.030.GS.R

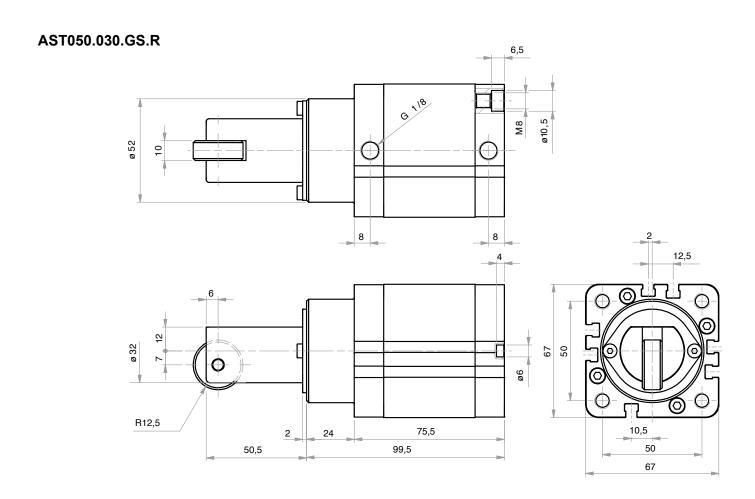
PST080.030.GS.R




Vérins stoppeurs : AST- L Tige lisse

AST032.020.GS.L

AST050.030.GS.L



Vérins stoppeurs : AST-R

Tige avec cylindre

5,5 AST032.020.GS.R 9718 9 W ø 8 8 ø20 20 32 90 R9 64,5 32 16 80,5 38 50

Haute précision de commande du mouvement et linéaire.

Alésage	50	100	150	200			stand 350			500	550	600
		100	100			m		100	100			
32	•	•	•	•	•	•	•	•				
50	•	•	•	•	•	•	•	•	•	•	•	•
63	•	•	•	•	•	•	•	•	•	•	•	•
QΛ												

Vérins électriques

Série ESN

Cylindre magnétique avec piston

Tête: Alliage d'aluminium - peint

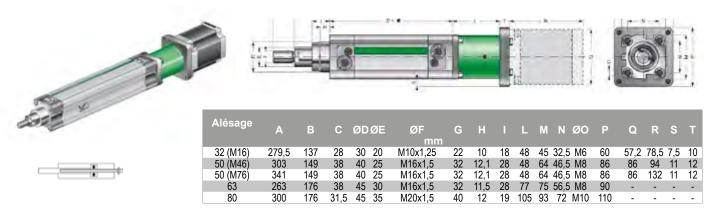
Tige: Acier chromé

Corps: Tube en aluminium profilé inoxydable

Joints : Polyuréthane

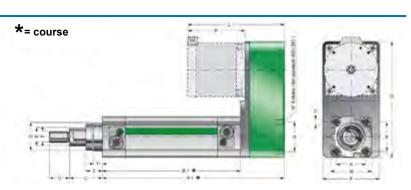
Températures de travail : -10°C à +80°C Plage de température moyenne : 0°C à +40°C

Lubrification: Non requise


Chaque version est disponible avec un pas de vis de 5 mm ou 12,7 mm.

L'évolution des systèmes d'automatisation nécessite souvent des mouvements précis et contrôlés. Les actionneurs ESNW ont été étudiés dans le but de satisfaire le besoin de placements multiples, systèmes d'automatisation répétitifs et de précision.

ESNW...L


Transmission lineaire directe

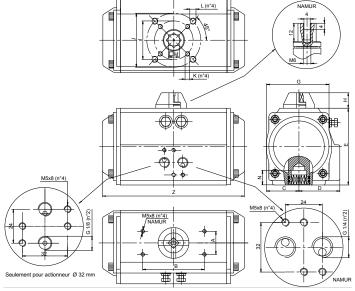
ESNW...G

ı	Alésage	Α	В	С	ØD	ØE	ØF mm	G	н		L	M	N	ØO	Р	Q	R
	32 (M16)	185	137	28	30	20	M10x 1,25	22	10	18	117	45	32,5	M6	60	110	78,5
	50 (M46)	214	149	38	40	25	M16x 1,5	32	12,1	28	147	64	46,5	M8	90	170	94
	50 (M76)	214	149	38	40	25	M16x 1,5	32	12,1	28	185	64	46,5	M8	90	175	132
	63	247	176	38	45	30	M16x 1,5	32	11,5	28	-	75	56,5	M8	90	200	-
	80	247	176	31,5	45	35	M20x 1,5	40	12	19	-	93	56,5	M10	110	212	-

Actionneurs rotatifs

Avec vannes à billes - simple effet

Série d'actionneurs rotatifs à simple effet, avec double crémaillère, montables sur des vannes à bille ou à papillon, pour l'automatisation de la fonction.


L'accouplement actionneur/vanne peut être direct grâce au perçage exécuté selon les normes ISO 5211-DIN 3337, sur la partie inférieure de l'actionneur lui-même ou bien par l'utilisation d'adaptateurs spécifiques.

La partie supérieure de l'actionneur est réalisée suivant la norme VDI/VDE 3845 NAMUR.

Elle permet d'installer des accessoires comme CAM et KIT capteur de position. Les connexions sur le côté sont taraudées et prévues pour la connexion de vannes NAMUR.

Fluide	Air comprimé filtré, avec ou sans lubrification. La lubrification, si elle est utilisée, doit être continue.
Pression d'utilisation	Voir tableau des forces page suivante
Température	-20 °C ÷ + 80°C
	Corps: Aluminium durci et anodisé ASTM6063T6
	Piston et crémaillère: Aluminium
Ba a timi a mar	Pignon: Acier nickelé
Matériaux	Têtes: Aluminium
	Vis et ressorts: Acier Inox
	Joints: Caoutchouc nitrile (NBR)

Version	Symbole	Référence
ø 52 mm, 12 ressorts, connexion F03/F05 CH=11		AR52SEF03/0511
ø 63 mm, 12 ressorts, connexion F05/F07 CH=14		AR63SEF05/0714
ø 75 mm, 12 ressorts, connexion F05/F07 CH=14		AR75SEF05/0714
ø 83 mm, 12 ressorts, connexion F05/F07 CH=17		AR83SEF05/0717
ø 92 mm, 12 ressorts, connexion F05/F07 CH=17		AR92SEF05/0717
ø 105 mm,12 ressorts, connexion F07/F10 CH=22		AR105SEF07/1022
ø 125 mm,12 ressorts, connexion F07/F10 CH=22		AR125SEF07/1022

Filetages	
Joints FKM (maxi T= 150°C)	V
Joints en silicone (maxi T= -40°C)	ВТ

Ø Actionneur	Α	В	С	D	E	G	Н	- 1	J	K	L	М	N	z	Connexion	Bride ISO
52	30	80	30	41.5	72	65	20	36	50	M5x8	M6x10	11	14	147	G1/4 NAMUR	F03 / F05
63	30	80	36	47	87.5	72	20	50	70	M6x10	M8x13	14	18	168	G1/4 NAMUR	F05 / F07
75	30	80	42	53	99.5	81	20	50	70	M6x10	M8x13	14	18	184	G1/4 NAMUR	F05 / F07
83	30	80	46	57	108,8	92	20	50	70	M6x10	M8x13	17	21	204	G1/4 NAMUR	F05 / F07
92	30	80	50	61	116,5	98	20	50	70	M6x10	M8x13	17	21	262	G1/4 NAMUR	F05 / F07
105	30	80	57,5	64	133	109,5	20	70	102	M8x13	M10x16	22	26	268	G1/4 NAMUR	F07 / F10
125	30	80	67,5	74.5	155	127,5	20	70	102	M8x13	M10x16	22	26	301	G1/4 NAMUR	F07 / F10

Feb. Per					Mo	ment	de to	rsion	des a	ction	neurs	à sin	nple e	ffet				
No. No.									Pre	ssion (b	oar)							
1	Ø Actionneur	Doggovto	2	.5	;	3	4	4	;	5	(6	,	7	8	3	Forces de	es ressorts
Fig.		Ressons	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°	90°	0°
54 7 4,0 1,3 6,0 3,3 9,8 7,3 14,0 10,4 12,5 14,1 12,5 14,1 12,5 14,1 12,5 14,1 12,5 14,1 12,5 14,1 1,1 1,1 1,1 1,1 1,4 8,3 1,4 1,2 1,1 1,6 1,1 1,1 1,6 1,6 1,1		5	5,7		7,6	5,7												4,3
68 8 8 8 52 20 92 6,0 31.2 91.1 12.2 14.1 0 9.9 6,7 10 1 1 1 1 1 1 1 1 1 1 1 4 1 4 8.5 18.3 4.8 12.2 1		-			,		,											
14			4,0	1,3						,	47.0	44.4						
10	52							,					20.2	16.0				
11					4,3	0,0	,		,	-								
12												,			22,6	18,3		
Fig.		12					,		9,7		13,8	9,1	17,8					
63 7 8,6 3,6 12,5 7,2 19,5 14,5 26,8 21,9		5	11,4	7,7	15,0	11,4	22,3	14,9									10,4	6,8
88 Image: Brown of the content of the con		6	10,1	5,7	13,6	9,3	,		29,3	23,9							12,5	
Page			8,6	3,6														
10	63				10,9	5,1	,											
11								,		,					447	27.4		
12							1,4	0,2	_						_ ′			
S									-		-							
66 12.4 7.6 17.3 12.6 27.4 22.7 37.5 32.8 Image: Control of the contro		5	14.5	10.6	19.4	15.5	29.5	25.7	-,-	,	, -	-,-	, ,	- , -	, -	,-		
Table Tabl		6			,	,	,		37,5	32,8							- '	
14		7	10,4	4,8	15,2	9,7	25,3	19,9	35,4	29,9							20,3	
14	75				13,1	6,8	,	,	,	,								
11	'						19,0	-	,								,	
12								11,1	,						,			
83																		
88			22.2	16 1	21.1	24.0	46.8	27.7	24,9	13,4	34,9	25,4	44,9	35,4	54,9	45,4	,	
170 170 6,9 24,8 14,8 40,5 30,5 56,2 46,2 46,5 58,6 57,2 84,5 72,9 36,8 25,3 36,8 25,3 36,8 36,			_ ′						59 4	50.7								
88																		
9	00	8	,-				,		- '		68,8	57,2	84,5	72,9			- '	
11	83	9					34,2	21,3	49,9	37,0	65,6	52,6	81,2	68,3			41,4	
12							31,0	16,6	- '								,	
92 33,1 22,0 44,2 33,2 66,8 55,8										-								
92 6 28,4 15,2 39,6 26,4 62,2 49,0 84,8 71,6 Image: Control of the c			00.4		44.0	00.0	00.0		40,4	23,2	56,1	38,9	/1,/	54,5	87,4	70,2		
92 7 23,8 8,2 34,9 19,4 57,5 42,1 80,2 64,7									04.0	74.0							,	
92 8 31,3 12,6 52,9 35,2 75,5 57,9 98,1 80,5 120,7 103,0 55,0 37,3 9 48,2 28,4 70,9 51,0 93,5 73,6 116,0 96,1 61,9 42,0 10 43,6 21,5 66,2 44,1 88,8 66,7 111,3 89,2 134,0 111,8 68,7 46,7 11 5 61,5 37,2 84,1 59,9 106,6 82,4 129,2 105,0 75,6 81,4 12 5 51,0 33,4 67,5 49,9 100,6 83,0 79,4 53,0 101,9 75,5 124,5 98,1 82,5 56,0 6 44,7 23,5 61,1 40,0 94,2 73,2 127,3 106,2 50,0 59,1 38,0 49,2 31,6 7 38,4 13,7 54,9 30,3 87,9 63,4 121,0 </td <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>,</td> <td></td>					,			,										
9			20,0	0,2							98.1	80.5	120.7	103.0				
10	92				0.,0	,0								, -				
12		10								44,1	88,8	66,7	111,3	89,2	134,0	111,8		46,7
105										37,2	84,1			82,4		105,0	75,6	81,4
105 6									56,8	30,4	79,4	53,0	101,9	75,5	124,5	98,1		
105 7 38,4 13,7 54,9 30,3 87,9 63,4 121,0 96,4									40= -	100 -								
105 8 48,5 20,4 81,6 53,5 114,7 86,5 147,7 119,6 180,8 152,7 78,7 50,6 9 75,3 43,7 108,4 76,8 141,5 109,8 174,5 142,9 88,6 56,9 10 68,9 33,4 102,0 66,5 135,1 99,6 168,2 132,9 201,2 165,7 98,4 63,3 11 89,7 75,0 128,7 90,1 161,8 123,1 194,8 156,2 108,3 69,6 12 89,4 47,5 122,5 80,6 155,5 113,6 186,6 146,7 118,1 75,9 5 73 47 98 72 148 122 5 80,6 155,5 113,6 186,6 146,7 118,1 75,9 52 6 63 31 88 56 138 107 188 157 5 5 136,2								-										
105 9			38,4	13,7						-	1/7 7	110.6	190.9	152.7				
10 68,9 33,4 102,0 66,5 135,1 99,6 168,2 132,9 201,2 165,7 98,4 63,3 11 95,7 57,0 128,7 90,1 161,8 123,1 194,8 156,2 108,3 69,6 12 98,4 47,5 122,5 80,6 155,5 113,6 188,6 146,7 118,1 75,9 5 73 47 98 72 148 122 90 128,5 80,6 155,5 113,6 188,6 146,7 118,1 75,9 6 63 31 88 56 138 107 188 157 90 178 141 90 110 73 8 67 25 117 75 167 125 217 176 268 226 125 84 9 107 96 44 146 94 196 144 247 194 297 <td>105</td> <td></td> <td></td> <td></td> <td>40,5</td> <td>20,4</td> <td>-</td> <td></td> <td>-</td>	105				40,5	20,4	-											-
11												-			201.2	165.7		
12 89,4 47,5 122,5 80,6 155,5 113,6 188,6 146,7 118,1 75,9 5 73 47 98 72 148 122 90 188 157 90 158 157 90 178 141 90 110 73 110 73 110 73 141 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> 7 =</td> <td> , -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>							7 =	, -										-
125 6 63 31 88 56 138 107 188 157		12								47,5								
125 7 52 15 77 50 127 90 178 141 110 73 8 67 25 117 75 167 125 217 176 268 226 125 84 9 107 59 157 109 207 159 257 210 141 90 10 96 44 146 94 196 144 247 194 297 245 157 105 11 108 136 78 186 128 236 178 286 228 173 115		5	73	47	98	72	148	122									79	52
125 8 67 25 117 75 167 125 217 176 268 226 125 84 9 107 59 157 109 207 159 257 210 141 90 10 96 44 146 94 196 144 247 194 297 245 157 105 11 136 78 186 128 236 178 286 228 173 115																		
9 107 59 157 109 207 159 257 210 141 90 10 96 44 146 94 196 144 247 194 297 245 157 105 11 136 78 186 128 236 178 286 228 173 115			52	15								,=-						
9 107 59 157 109 207 159 257 210 141 90 10 96 44 146 94 196 144 247 194 297 245 157 105 11 136 78 186 128 236 178 286 228 173 115	125				67	25												
11 136 78 186 128 236 178 286 228 173 115															207	245		
							90	44										
		12							125	63	176	113	226	163	276	213	188	125

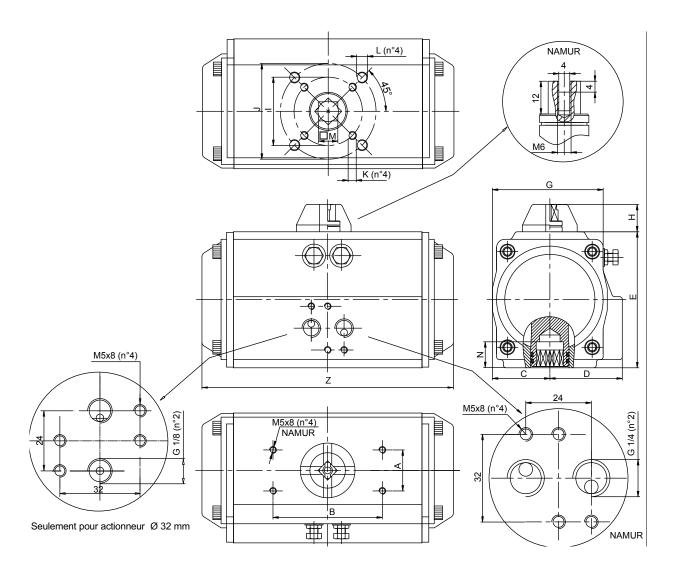
Actionneurs rotatifs

Avec vannes à billes - double effet

Série d'actionneurs rotatifs à double effet, avec double crémaillère, montables sur des vannes à bille ou à papillon, pour l'automatisation de la fonction.

L'accouplement actionneur/vanne peut être direct grâce au perçage exécuté selon les normes ISO 5211-DIN 3337 sur la partie inférieure de l'actionneur lui-même, ou bien par l'utilisation d'adaptateurs spécifiques.

La partie supérieure de l'actionneur est réalisée en accord avec la norme VDI/VDE 3845 NAMUR. Elle permet d'installer des accessoires comme CAM et KIT capteur de position. Les connexions sur le côté sont taraudées et prévues pour la connexion de vannes NAMUR.

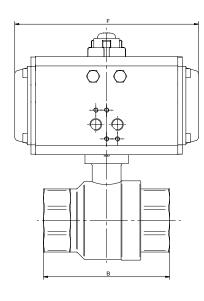

Fluide	Air comprimé filtré, avec ou sans lubrification. La lubrification, si elle est utilisée, doit être continue.				
Température	-20 °C ÷ + 80°C				
	Corps : Aluminium durci et anodisé ASTM6063T6				
	Piston et crémaillère : Aluminium				
Ba-44 minus	Pignon : Acier nickelé				
Matériaux	Têtes : Aluminium				
	Vis et ressorts : Acier Inox				
	Joints : Nitrile (NBR)				

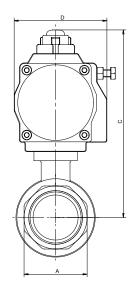
Version	Symbole	Référence
ø 32 mm connexion F03 CH=9		AR32DEF0309
ø 52 mm 2 connexion F03/F05 CH=11		AR52DEF03/0511
ø 63 mmconnexion F05/F07 CH=14	L.	AR63DEF05/0714
ø 75 mm connexion F05/F07 CH=14		AR75DEF05/0714
ø 83 mm connexion F05/F07 CH=17		AR83DEF05/0717
ø 92 mm connexion F05/F07 CH=17		AR92DEF05/0717
ø 105 mm connexion F07/F10 CH=22		AR105DEF07/1022
ø 125 mm connexion F07/F10 CH=22		AR125DEF07/1022

Filetages	
Joints FKM (maxi T= 150°C)	٧
Joints en silicone (maxi T= -40°C)	ВТ

	Moment de torsion des actionneurs à double effet										
ø		Pression (bar)									
Actionner	2	2,5	3	4	4,5	5	5,5	6	7	8	
32	3,1	3,8	4,6	6,1	6,9	7,6	8,4	9,2	10,7	12,2	
40	4,8	6,0	7,2	9,5	10,7	11,9	13,1	14,3	16,7	19,1	
52	8,0	10,0	12,0	16,0	18,0	20,0	21,9	23,9	27,9	31,9	
63	14,6	18,2	21,9	29,2	32,8	36,5	40,1	43,8	51,1	58,4	
75	20,1	25,1	30,1	40,1	45,1	50,2	55,2	60,2	70,2	80,3	
83	31,4	39,2	47,0	62,7	70,5	78,4	86,2	94,1	109,7	125,4	
92	45,1	56,4	67,7	90,3	101,6	112,9	124,1	135,4	158,0	180,6	
105	66,1	82,7	99,2	132,2	148,8	165,3	181,8	198,4	231,4	264,5	
125	100,3	125,4	150,5	200,6	225,7	250,8	275,9	301,0	351,1	401,3	

Ø Actionneur	A	В	С	D	E	G	Н		J	K	L	М	N	z	Connexion	Bride ISO
52	30	80	30	41.5	72	65	20	36	50	M5x8	M6x10	11	14	147	G1/4 NAMUR	F03 / F05
63	30	80	36	47	87.5	72	20	50	70	M6x10	M8x13	14	18	168	G1/4 NAMUR	F05 / F07
75	30	80	42	53	99.5	81	20	50	70	M6x10	M8x13	14	18	184	G1/4 NAMUR	F05 / F07
83	30	80	46	57	108,8	92	20	50	70	M6x10	M8x13	17	21	204	G1/4 NAMUR	F05 / F07
92	30	80	50	61	116,5	98	20	50	70	M6x10	M8x13	17	21	262	G1/4 NAMUR	F05 / F07
105	30	80	57,5	64	133	109,5	20	70	102	M8x13	M10x16	22	26	268	G1/4 NAMUR	F07 / F10
125	30	80	67,5	74.5	155	127,5	20	70	102	M8x13	M10x16	22	26	301	G1/4 NAMUR	F07 / F10




Vannes à bille laiton

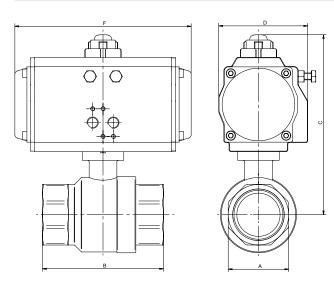
Avec actionneurs simple effet

Série de vannes à bille en laiton à passage intégral avec actionneur rotatif à simple effet.

Fluide	Air comprimé, eau, gaz inertes et fluides non agressifs										
Pression d'utilisation		40 bar									
Température		-20 °C ÷ + 130°C									
Diamètre nominal	1/2"= 15 mm	3/4"= 20 mm	1"= 25 mm	1 1/4"= 32 mm	1 1/2"= 40 mm	2"= 50 mm					
Débit	1/2"= 11.500 l/min	3/4"= 21.000 l/min	1"= 33.000 l/min	1 1/4"= 50.000 l/min	1 1/2"= 84.000l/min	2"= 97.000 l/min					
Installation			E	n ligne							
			Corps : I	Laiton nickelé							
Matériaux			Bille : La	aiton chromé							
			Joints :	PTFE - NBR							

Version	Symbole	Référence
1/2"		VSO2012SE
3/4"		VSO2034SE
1"		VSO2100SE
1 1/4"		VSO2114SE
1 1/2"		VSO2112SE
2"		VSO2200SE

Ø actionneur	Version	A	В	С	D	F
52	G1/2	26	75	130	71,5	147
52	G3/4	32	80	132,5	71,5	147
52	G1	41	90	136	71,5	147
63	G1 1/4	50	110	162,5	83	168
63	G1 1/2	55	120	169	83	168
83	G2	70	140	201,8	103	204



Vannes à bille laiton

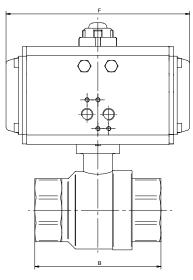
Avec actionneurs double effet

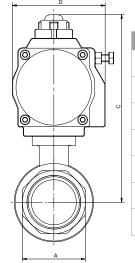
Série de vannes à bille en laiton à passage intégral avec actionneur rotatif à double effet.

Fluide	Air comprimé, eau, gaz inertes et fluides non agressifs										
Pression d'utilisation		40 bar									
Température		-20 °C ÷ + 130°C									
Diamètre nominal	1/2"= 15 mm	3/4"= 20 mm	1"= 25 mm	1 1/4"= 32 mm	1 1/2"= 40 mm	2"= 50 mm					
Débit	1/2"= 11.500 l/min	3/4"= 21.000 I/min	1"= 33.000 I/min	1 1/4"= 50.000 l/min	1 1/2"= 84.000l/min	2"= 97.000 I/min					
Installation			E	n ligne							
			Corps : I	_aiton nickelé							
Matériaux			Bille : La	aiton chromé							
			Joints :	PTFE - NBR							

Version	Symbole	Référence
1/2"		VSO2012DE
3/4"		VSO2034DE
1"		VSO2100DE
1 1/4"		VSO2114DE
1 1/2"		VSO2112DE
2"		VSO2200DE

Ø actionneur	Version	Α	В	С	D	F
32	G1/2	26	75	103	45	118
32	G3/4	32	80	105,5	45	118
40	G1	41	90	124	65	120
40	G1 1/4	50	110	135	65	120
52	G1 1/2	55	120	153,5	71,5	147
63	G2	70	140	180,5	83	168





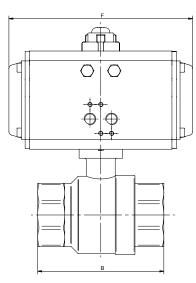
Vannes à bille acier inoxydable Avec actionneurs à simple effet

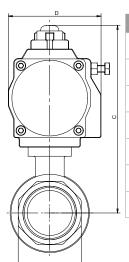
Série de vannes à bille en acier inoxydable à passage intégral avec actionneur rotatif à simple effet.

Fluide		Air comprimé, eau, gaz inertes et fluides non agressifs								
Pression d'utilisation		63 bar								
Température				-20 °C -	- + 150°C					
Diamètre nominal	3/8"= 10 mm	3/8"= 10 mm								
D/hit	3/8"= 3.0	000 l/min	1/2"= 1	1.500 l/min	3/4"= 21.0	000 I/min	1"= 33.000 l/min			
Débit	1 1/4"= 50	1 1/4"= 50.000 l/min								
Installation	En ligne									
Matériaux		Corps : Acier Inox AISI 316 Bille : Acier Inox AISI 316 Joints : PTFE - FKM								

Version	Symbole	Référence
3/8"		VSI2038SE
1/2"		VSI2012SE
3/4"		VSI2034SE
1"		VSI2100SE
1 1/4"		VSI2114SE
1 1/2"		VSI2112SE
2"		VSI2200SE

Ø actionneur	Version	Α	В	С	D	F
52	G3/8	27	65	132	71,5	147
52	G1/2	27	75	132	71,5	147
52	G3/4	33	80	136	71,5	147
63	G1	41	90	159,5	83	168
63	G1 1/4	50	110	165,5	83	168
83	G1 1/2	58	120	196,8	103	204
83	G2	70	140	205,8	103	204





Vannes à bille acier inoxydable Avec actionneurs à double effet

Série de vannes à bille en acier inoxydable à passage intégral avec actionneur rotatif à double effet.

Fluide	Air comprimé, eau, gaz inertes et fluides non agressifs								
Pression d'utilisation		63 bar							
Température				-20 °C	÷ + 150°C				
Diamètre nominal	3/8"= 10 mm	3/8"= 10 mm							
	3/8"= 3.	000 I/min	1/2"= 11	1.500 I/min	3/4"= 21.0	000 I/min	1"= 33.000 l/min		
Débit	1 1/4"= 50	1 1/4"= 50.000 l/min							
Installation	En ligne								
Matériaux	Corps : Acier Inox AISI 316 Bille : Acier Inox AISI 316 Joints : PTFE - FKM								

Version	Symbole	Référence
3/8"		VSI2038DE
1/2"		VSI2012DE
3/4"		VSI2034DE
1"		VSI2100DE
1 1/4"		VSI2114DE
1 1/2"		VSI2112DE
2"		VSI2200DE

Ø actionneur	Version	Α	В	С	D	F
32	G3/8	27	65	105	45	118
32	G1/2	27	75	105	45	118
32	G3/4	33	80	109	45	118
40	G1	41	90	132	65	120
52	G1 1/4	50	110	150	71,5	147
63	G1 1/2	58	120	175,5	83	168
75	G2	70	140	196,5	95	184

Boîtier fin de course

Pour actionneur rotatif avec vannes à billes

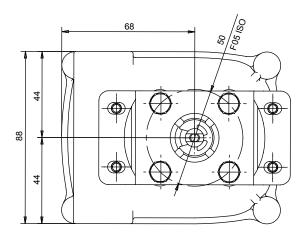
Boîtier en aluminium peint avec poudre époxydique noire. Fourni avec bride universelle réglable (L=30x80/130-H=20/30)

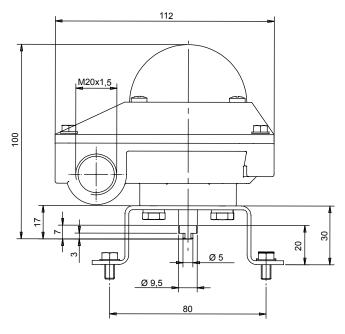
Objectif : vérifier facilement la position de chaque vanne contrôlée même à distance. Peut contenir une fin de course mécanique ou de proximité.

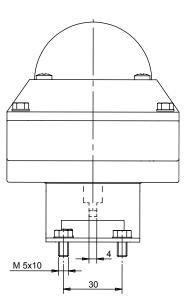
Indicateur de position 3D jaune/rouge

Serre-câble 8 positions standard (deux libres pour une éventuelle connexion de l'électrovanne dans le boîtier).

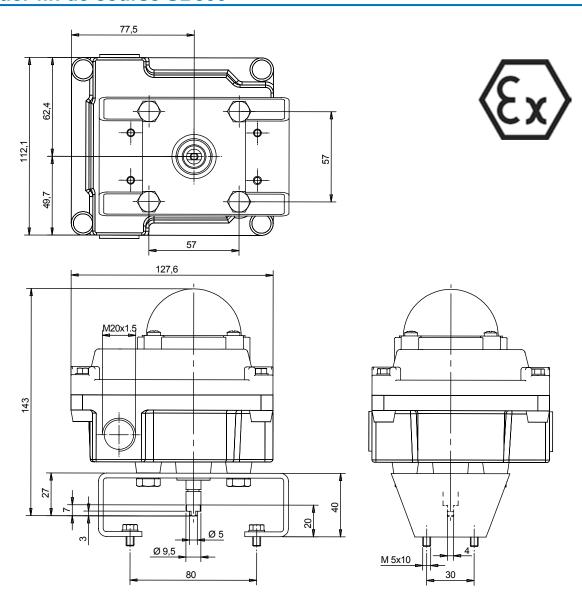
Vis du couvercle auto-bloquantes pour éviter les fuites.



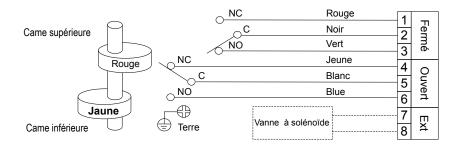

Degré de protection	IP67 (SB200) - IP66 (SB500)
Connections	M20x1.5 (x2)
Serre-câble	8 endroits
Indicateur de position	0° ÷ 90°
Ouverte / Fermé	Jaune / Rouge
Matériaux	Couvercle : Aluminium moulé sous pression Corps : Aluminium moulé sous pression Pivot : Acier inoxydable Couvercle indicateur : Polycarbonate Indicateur : ABS, polycarbonate Indicateur : Polycarbonate, laiton, acier inoxydable Came : Polycarbonate Ressort : Acier inoxydable Vis du couvercle : Acier inoxydable Joint O-Ring : NBR Vis de mis à la terre : Acier inoxydable


Référence	Fin de course	Code	Référence
	ZM50G10B01	811188	SB200M012
	ZM10G10B01	811189	SB200M022
SB200	NBB2-V3-E2	811190	SB200P112
	IS5076	811191	SB200P122
	NCB2-V3-NO	811192	SB200P132
	ALMS-5-240	811193	SB200Q512
	83261	811194	SB500M032
	83268	811195	SB500M042
SB500	NBBB2-V3-E2	811196	SB500P112
SB300	IS 5076	811197	SB500P122
	NCB2-V3-NO	811198	SB500P132
	ALMS-5-240	811199	SB500Q512

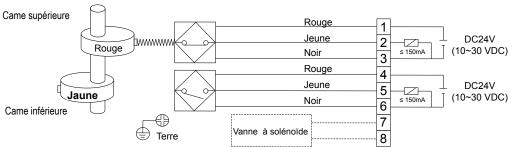
Boîtier fin de course SB200



	Mécan	iques		Inductifs	Magnétiques		
	Honey	ywell	Pepprl Fuchs	IFM	Pepperl Fuchs	ALMS	
Référence	ZM10G10B01	ZM10G10B01	NBB2-V3-E2	IS5076	NCB2-V3-NO	ALMS-5-240	
Indicateur EX	-	-	EEx ia IICT6	-	EEx ia IICT6	-	
Contacts	Argents	Or		-		-	
Fonction	SPI	DT	PNP	PNP/NPN	NAMUR NC	-	
Nombre de fils	3		3	2	2	3	
Tension	125 ÷ 250 VAC	0 ÷ 125 VAC	10 ÷ 30 VDC	5 ÷ 36 VDC	8 VDC	5 ÷ 240 V AC/DC	
Intensité	5 A	0,1 A	0 ÷ 100 mA	0 ÷ 200 mA	-	≤ 300 mA	
Fréquence de commutation	-		0 ÷ 1000 Hz	0 ÷ 2000 Hz	0 ÷ 2000 Hz	60 Hz	
Température	-20 ÷ +	80 °C	-25 ÷ +70 °C	-25 ÷ +80 °C	-25 ÷ +100 °C	-20 ÷ +75 °C	
N° schéma de câblage	1		2	2/3	4	5	
Code fin de course	01	02	11	12	13	51	
Numéro de fin de course	2	2	2	2	2	2	
Code	811188	811189	811190	811191	811192	811193	
Référence	SB200M32 SB200M42		SB200P112	SB200122	SB200P132	SB200Q512	

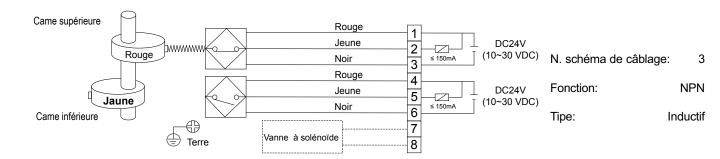

Boîtier fin de course SB500

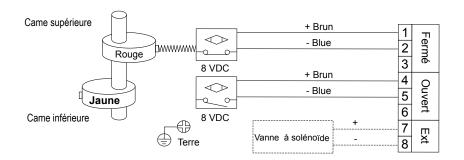
	Mécan	iques		Inductifs	Magnétiques	
	Crouzet		Pepprl Fuchs	IFM	Pepperl Fuchs	ALMS
Référence	03261	83268	NBB2-V3-E2	IS5076	NCB2-V3-NO	ALMS-5-240
Indicateur EX	-	-	EEx ia IICT6	-	EEx ia IICT6	-
Contacts	Argent	Or		-		-
Fonction	SPE	T	PNP	PNP / NPN	NAMUR NC	-
Nombre de fils	3		3	2	2	3
Tension	125 ÷ 250 VAC	0 ÷ 125 VAC	10 ÷ 30 VDC	5 ÷ 36 VDC	8 VDC	5 ÷ 240 V AC/DC
Intensité	5 A	0,1 A	0 ÷ 100 mA	0 ÷ 200 mA	-	≤ 300 mA
Fréquence de commutation	-		0 ÷ 1000 Hz	0 ÷ 2000 Hz	0 ÷ 2000 Hz	60 Hz
Température	-20 ÷ +	80 °C	-25 ÷ +70 °C	-25 ÷ +80 °C	-25 ÷ +100 °C	-20 ÷ +75 °C
N° schéma de câblage	1		2	2/3	4	5
Code fin de course	03	04	11	12	13	51
Numéro de fin de course	2	2	2	2	2	2
Code	811194 811195		811196	811197	811198	811199
Référence	SB500M32 SB500M42		SB500P112	SB500122	SB500P132	SB500Q512


Shéma de câblage - boîtier fin de course

N. schéma de câblage: 1

Fonction: **SPDT**

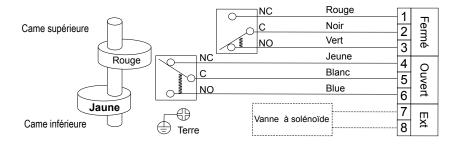

Tipe: Mécanique



N. schéma de câblage: 2

PNP Fonction:

Tipe: Inductif



N. schéma de câblage: 4

NAMUR CN Fonction:

Tipe: Inductif

N. schéma de câblage:

SPDT Fonction:

Tipe: Magnétique

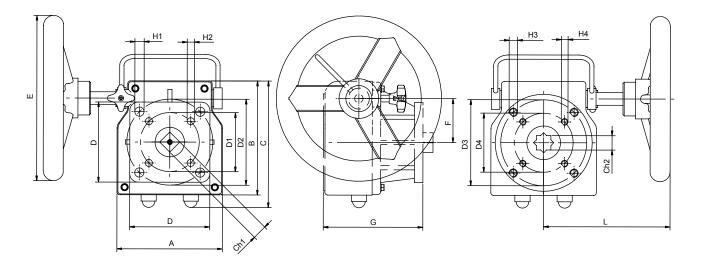
Réducteurs débrayables

Pour actionneur rotatif avec vannes à billes

Série de réducteurs débrayables de dernier génération, compacts et universels, avec protection IP67. Permet de choisir le positionnement entre la vanne et l'actionneur, la fonction du adaptateur peut être inversée. Le réducteur est installé entre la vanne et l'actionneur : le pivot de la vanne peut être raccordé au pignon de l'actionneur directement par le corps du réducteur ou par un adaptateur (si un étrier de fixation est envisagé). Pendant le fonctionnement automatisé, le volant est débravé.

Avec la fonction manuelle, le volant actionnera la vanne à bille et l'actionneur.

Caractéristiques techniques


Matériaux

Poignée : Acier au carbone Arbre volant manuel: C45 Volant manuel : Fonte gris

Vis de positionnement : Acier au carbone Vis sans fin : Graphite en fonte sphéroïdale

Bride de support : Fonte gris

Corps: Fonte gris

Référence	Α	В	С	Е	F	G	L	D1	H1	D2	H2	D3	Н3	D4	H4	Ch1	Ch2
GDB050	90	110	125	Ø 200	44	100	130	Ø 50	Ø 6,5	Ø 70	Ø 8,5	Ø 50	M6	Ø 70	M8	14	17
GDB070	125	135	150	Ø 200	52	118	150	Ø 70	Ø 8,5	Ø 102	Ø 11	Ø 70	M8	Ø 102	M10	17	17
GDB102	140	185	185	Ø 300	65	124	180	Ø 102	Ø 11	Ø 125	Ø 13	Ø 102	M10	Ø 125	M12	17	27
GDB140	190	230	230	Ø 400	85	162	200	-	-	Ø 140	Ø 17	-	-	Ø 140	M16	27	36

Référence	Report de transmission	Moment de torsion
GDB050	1 : 40	300 Nm
GDB070	1 : 38	360 Nm
GDB102	1 : 36	810 Nm
GDB140	1 : 50	1310 Nm

Tailles: 1, 3, 10, 20, 30, 50, 150, 300, 800

Vérins rotatifs à palette

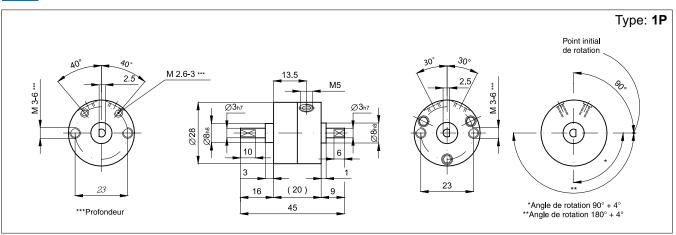
Double effet

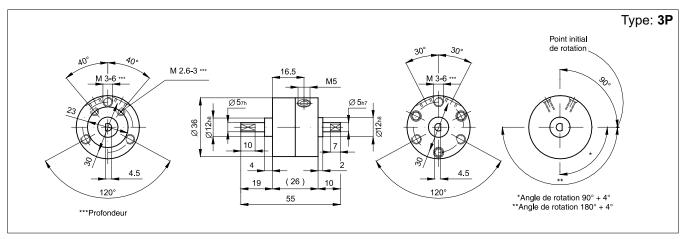
Série de vérins rotatifs à palette d'encombrement réduit avec des angles de rotation fixes et réglables. Amortisseurs élastiques pour atténuer les chocs des palettes - disponibles en version simple ou double pour obtenir un couple plus élevé.

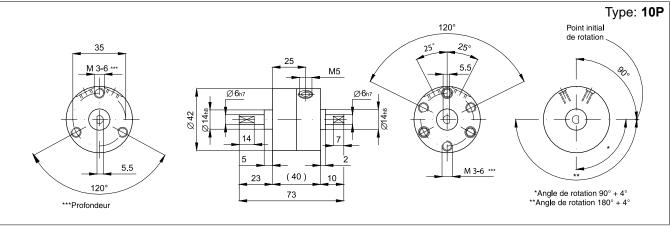
Caractéristiques techniques

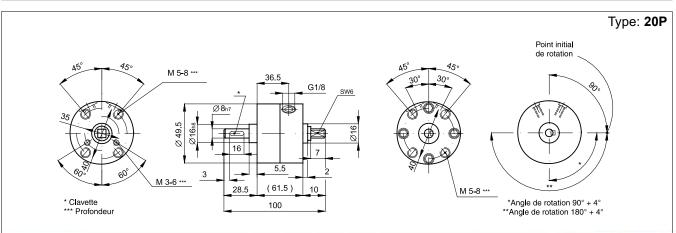
Fluide	Air comprimé filtré, lubrifié ou non. La lubrification, si elle est utilisée, doit être continue
Pression d'utilisation	$2\div 10$ bar - Modèles 1P-3P-3PR: $3\div 7$ bar - Modèles 10P-20P-10PR: $2\div 7$ bar
Température	+5 °C ÷ + 60°C
	Corps : Aluminium moulé sous pression
Matária	Arbre : Acier
Matériaux	Palier d'arbre: Bronze fritté
	Joints : Nitrile (NBR)

Ma	atériaux	Palier d'arbre: Bronze f Joints : Nitrile (NBR)	ritté			
	Va	riantes	Sigle	Dar vari		
_	•	capteurs incorporés nté voir page 119	М	com		
Versi	ons spéciales	s sur demande /S				

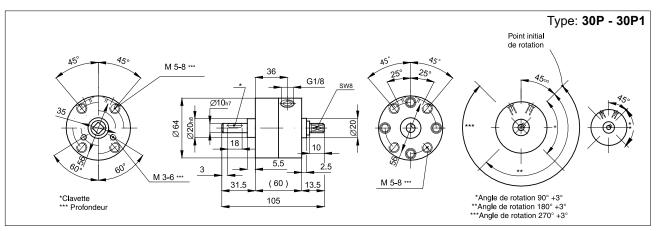

Dans certains cas, les variantes peuvent être combinées entre elles.

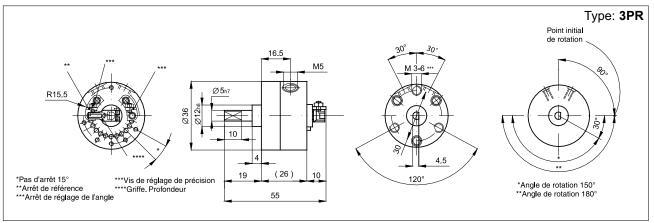

Version	Symbole	Référence
Simple palette Rotation fixe	-	Р
Double palette Rotation fixe		P1
Simple palette Rotation réglable	-	PR
Double palette Rotation réglable		P1R

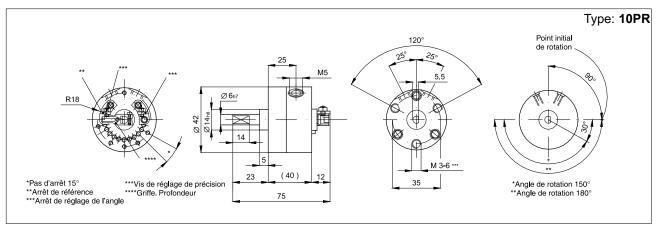

Type	Rotation standard	Rotation maximum	Tolérance de rotation	Mome 3bar	nts de torsion 6 bar	(Nm) 9 bar	Angles de rotation possible
1P				0,076	0,156	-	
3P			de 0° à +4°	0,16	0,38	-	00° a 100°
10P			de 0 a +4	0,56	1,2	-	90° e 180°
20P				0,95	2,1	3,26	
30P				1,8	4,1	6,5	
50P				2,59	5,9	9,5	
150P				8,5	18	27,3	90°,180° e 270°
300P				16,5	34,5	51,8	
800P				59,1	123	186	
30P1	90°, 180°, 270°	270°		4,4	9,5	14,8	
50P1					20,1		
150P1			de 0° à +3°	19	41,5	62	90°
300P1				39	83	124	
800P1				120	247	371	
3PR				0,162	0,324	-	
10PR				0,46	1,06	-	Réglable de 30° à 180
20PR				0,8	1,95	3,1	00 4 100
30PR				1,8	4,1	6,5	Réglable de 30° à 270°
30P1R				4,4	9,5	14,8	Réglable de 30° à 90°

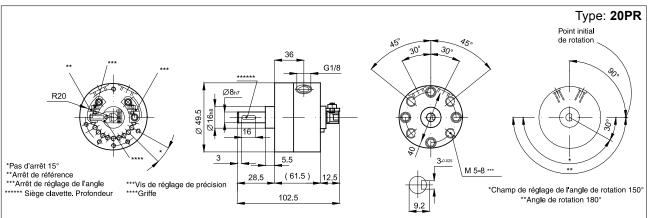


Dimensions et points d'oscillation

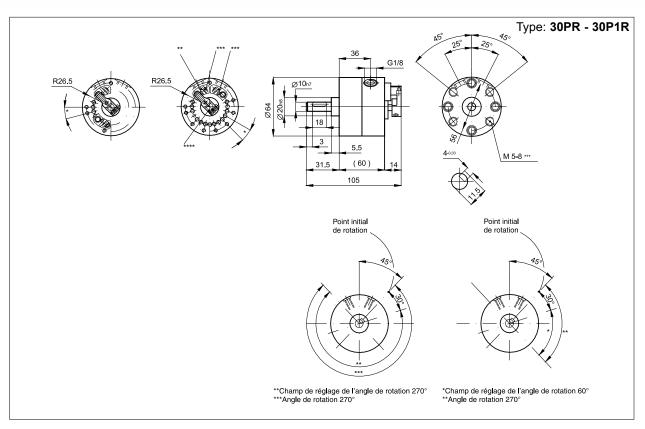


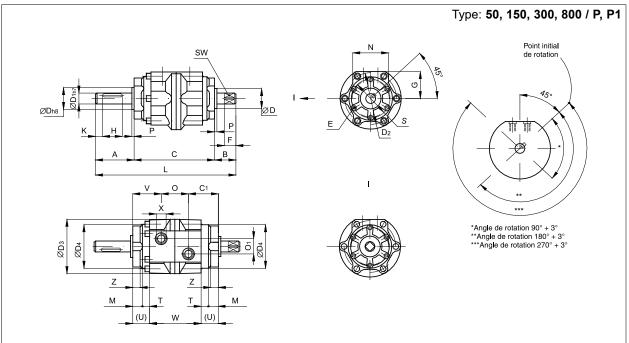


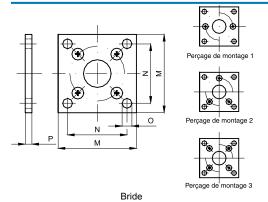




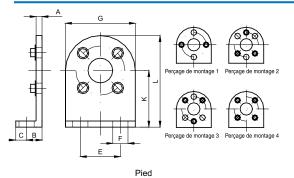
Dimensions et points d'oscillation





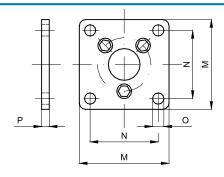

D1

50	39,5	19,5	86	29	25	12	68	79	58	Мбх9	13	36	20	5	145
150	53,5	23,5	103	34,5	30	17	97	110	85,5	M8x12	16	51	36	5	180
300	65	30	125	41,5	45	25	125	141,5	110	M10x15	22	66	40	5	220
800	69,5	44,5	171	53,5	70	40	173	196	152	M12x18	25	90	40	10	285
Taille	M	N	0	01	Р	S	Т	U	V	W	Χ	Z	SW		Kg
50	14	44	28	16	2,5	45	6	20	29	46	1/8"	11	10		0,82
150	15,5	61	34	24	3	70	8	23,5	34,5	56	1/4"	10,5	13		2
300	17,5	78	42	32	3,5	80	10	27,5	41,5	70	3/8"	13	19		4,3
800	21	110	64	44	4,5	120	11,5	32,5	53,5	106	1/2"	14,5	32		12,7



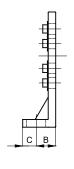
Fixations

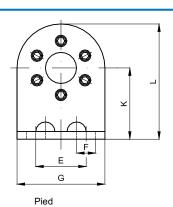
I	Référence	Taille	М	N	0	Р	Perçage de montage	Rotation *	Kg
	FP001	1	30	24	3,4	2	1	180°	0,04
	FP003	3	27	30	3,4	2,5	2	120°	0,07
	FP010	10	42	34	3,5	3	2	120°	0,14
	FP020	20	50	41	5,5	3,5	3	90°	0,36
	FP030	30	64	52	5,5	3,5	3	90°	0,47


^{*} Possibilité de faire pivoter la fixation avec l'angle indiqué

Référence	Taille	A	В	С	E	F	G	K	L	Perç. de mont.	Rot.*	Kg
PP001	1	2	10	5	20	4,8	30	22	37	1	90°	0,04
PP003	3	2,5	11	7	26	4,8	36	25	43	2	60°	0,05
PP010	10	2,3	12	8	30	5,8	42	30	51	3	60°	0,09
PP020	20	3,5	15	10	36	7	49	34	58,5	4	90°	0,2
PP030	30	4,5	18	12	48	6,5	66	42	75	4	90°	0,2

^{*} Possibilité de faire pivoter la fixation avec l'angle indiqué


FP

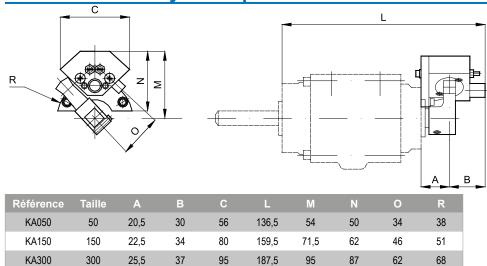


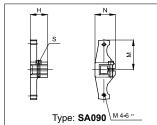
Référence	Taille	M	N	0	Р	Rotation	Kg
FP050	50	80	64	7	35	60°	0,2
FP150	150	110	88	9	47,5	60°	0,51

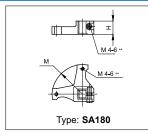
^{*} Possibilité de faire pivoter la fixation avec l'angle indiqué

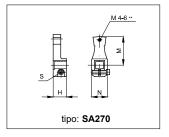
PP

Référence	Taille	Α	В	С	Е	F	G	K	L	Rotat.*	Kg
PP050	50	4,5	25	10	55	11	75	45	82,5	60°	0,26
PP150	150	10	28	12	80	13	110	65	115	60°	1,14
PP300	300	12	32	13	100	15	140	80	135	60°	1,24
PP800	800	15	35	15	140	15	200	110	185	60°	4,45

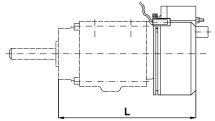

^{*} Possibilité de faire pivoter la fixation avec l'angle indiqué

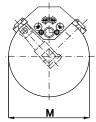


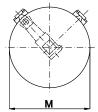

Accessoires - Vérins rotatifs à palette


Kit amortisseur hydraulique

Bride pour amortisseur hydraulique






** Profondeur

Code	Référence	Code	Référence	Code	Référence	Taille	Н	M	N	S
40935	SA090050	40940	SA180050	40945	SA270050	50	18	38	23	4
40936	SA090150	40941	SA180150	40946	SA270150	150	20	51	28	5
40937	SA090300	40942	SA180300	40947	SA270300	300	23,5	68	40	6

Kit pour montage capteurs (complet de capteur), variante M ...

Kit à commander en même temps que le vérin.

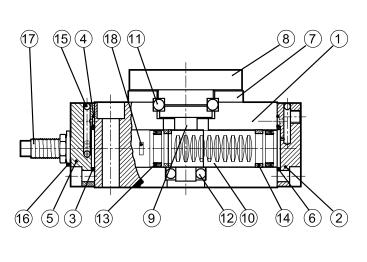
	Variantes et caractéris	stiques techniques des fins de course magnétiques	ues	
Variante	Tension nominale (V)	Intervalle de courant (mA)	LED	Varistance
MA1	AC 100 / DC 24	5 ~ 45	•	
MD1	DC 24	25 ~ 65	•	
MA2L	AC 100 / 110	5 ~ 150	•	•
MA2H	AC 200 / 220	5 ~ 150	•	•
MD3	DC 5,6	≤ 50 (charge inductive) ≤300 (charge résistive)	•	
MR	AC / DC 5 ~ 100	≤ 50 (charge inductive) ≤300 (charge résistive)		

Actionneurs rotatifs série ARC

Double effet - Alésage de 15 à 25 mm

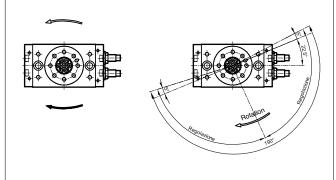
Série d'actionneurs rotatifs à double crémaillère. Fournis de série en version magnétique avec des rainures sur le corps pour l'application directe des fins de course magnétiques.

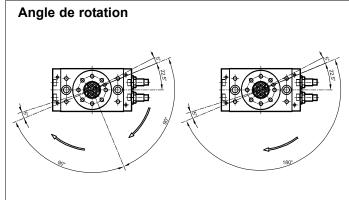
Fournis de série avec fins de course mécaniques, sur demande disponibles avec décélérateurs hydrauliques.

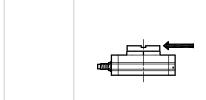

Туре	15ARC	18ARC	20ARC	25ARC				
Fluide		nprimé filtré ave ation, si elle est						
Pression d'utilisation		1,5 ÷	- 7 bar					
Température		0°C÷	+ 50° C					
Angle de rotation		90° e	e 180°					
Angle de réglage		0° -	÷ 90°					
Moments de rotation (Nm)	1.5	2.2	3.2	5.5				
Connexions	M5 1/8"							
Poids (g)	530	990	1290	2100				

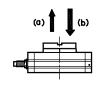
Version	Code	Référence
Alésage 15 mm (x2)	073063	15ARC
Alésage 18 mm (x2)	073064	18ARC
Alésage 20 mm (x2)	073065	20ARC
Alésage 25 mm (x2)	073066	25ARC

Variantes		Sigle											
Avec décélérate	Avec décélérateurs hydrauliques												
Actionneur rotatif	Capacité d'absorption Max (kgf.m)												
15ARC	2												
18ARC	4												
20ARC	4												
25ARC	20												

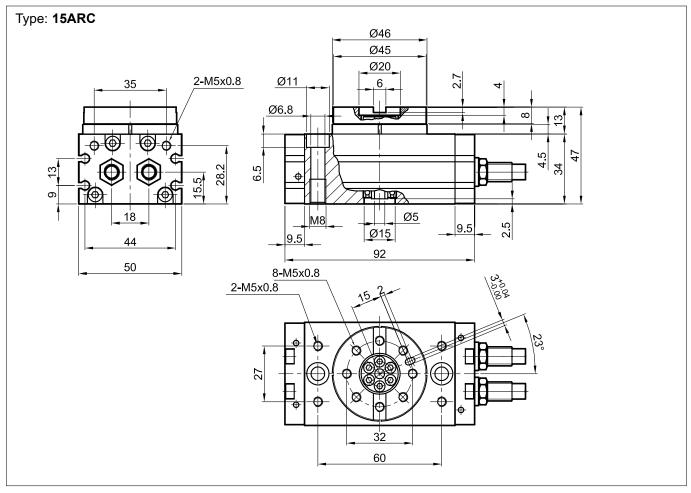


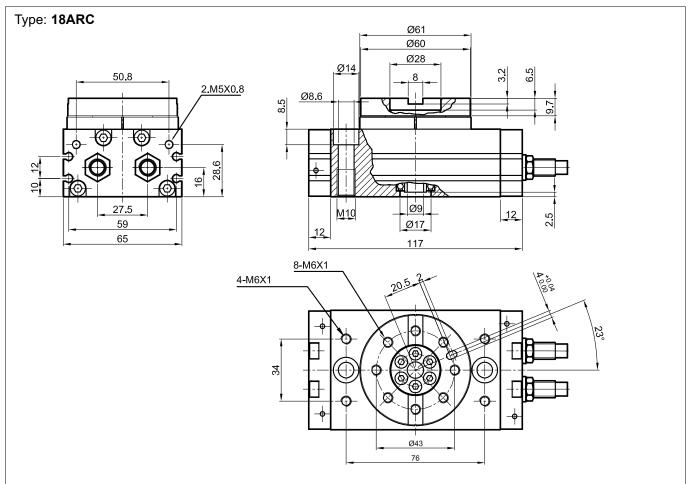

Matériaux

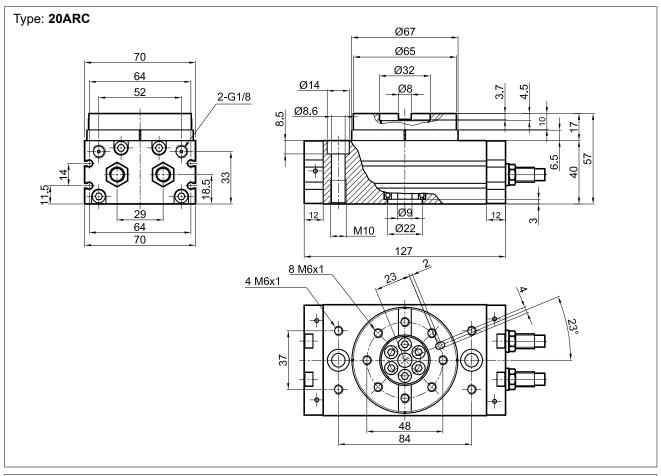

N.	Composant	Matiére
1	Corps	aluminium anodisé
2	Tête avant	aluminium anodisé
3	O-Ring	NBR
4	O-Ring	NBR
5	Tête arrière	aluminium anodisé
6	O-Ring	NBR
7	Couvercle coussinets	aluminium anodisé
8	Plateau rotatif	aluminium anodisé
9	Tige	acier durci
10	Crémaillère	acier INOX
11	Coussinet à billes	acier
12	Coussinet à billes	acier
13	Joint piston	NBR
14	Rondelle	Matiére plastique
15	Bille	alliage d'acier
16	Joint fin de course	NBR
17	Fin de course mécanique	alliage d'acier
18	Aimant	Magnéto-ferrite

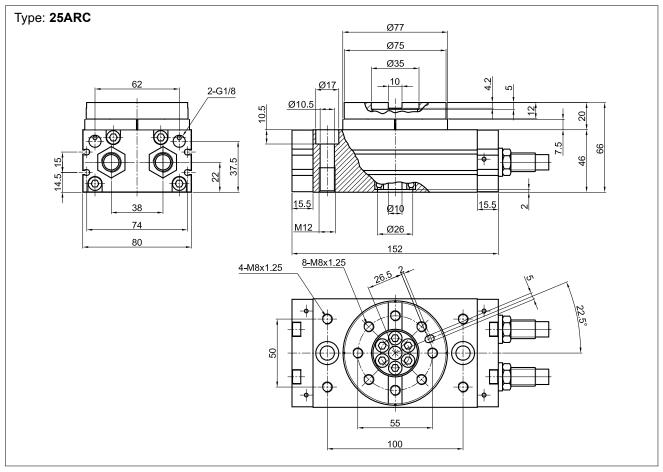

Direction et angle de rotation

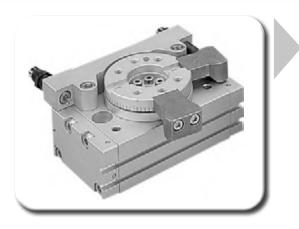
Charges admissibles






Référence	Latérale	Perpendicu	ılaire (N)	Moment de torsion
Reference	(N)	(a)	(b)	(N)
ARC15	70	68	70	2
ARC18	140	130	130	3,5
ARC20	185	188	358	4,8
ARC25	300	285	442	9

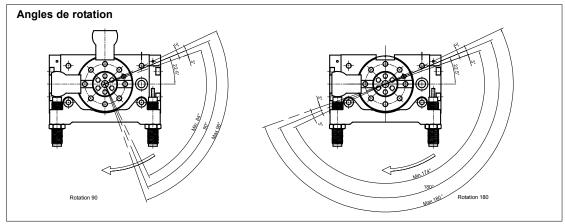


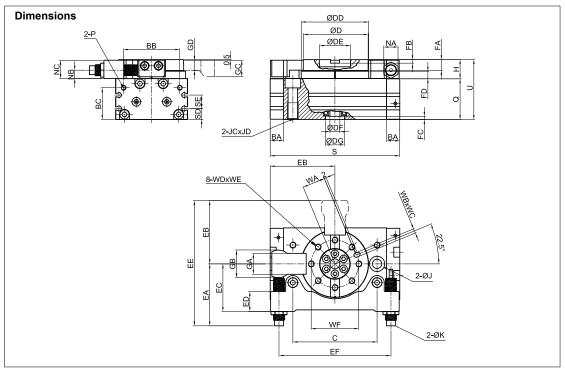


Actionneurs rotatifs série ARP Double effet - Alésage de 15 à 25 mm

Série d'actionneurs rotatifs à piston et fins de course mécaniques externes.

Fournis de série en version magnétique avec des rainures sur le corps pour l'application directe des fins de course


Fournis de série avec fins de course mécaniques, sur demande disponibles avec décélérateurs hydrauliques.


Туре	15ARP	18ARP	20ARP	25ARP						
Fluide		•	ec ou sans lubr t utilisée, doit ê							
Pression d'utilisation		1,5 ÷	÷ 7 bar							
Température		0°C÷	+ 50° C							
Angle de rotation		90° (e 180°							
Angle de réglage		0° -	÷ 90°							
Moments de rotation (Nm)	2.5	4.1	5.5	9.8						
Connexions	M5	x0.8	1/	8"						
Matériaux	Corps : aluminium anodisé Joints : NBR									

Version	Code	Référence
Alésage 15 mm (x2), 90°	073071	15/90ARP
Alésage 18 mm (x2), 90°	073072	18/90ARP
Alésage 20 mm (x2), 90°	073073	20/90ARP
Alésage 25 mm (x2), 90°	073074	25/90ARP
Alésage 15 mm (x2), 180°	073079	15/180ARP
Alésage 18 mm (x2), 180°	073080	18/180ARP
Alésage 20 mm (x2), 180°	073081	20/180ARP
Alésage 25 mm (x2), 180°	073082	25/180ARP

Variantes		Sigle											
Avec décélérate	Avec décélérateurs hydrauliques												
Actionneur rotatif	Capacité d'absorption Max (kgf.m)												
15ARP	0,1												
18ARP	0,15												
20ARP	2,1												
25ARP	2,1												
		,											

Туре	Α	ВА	ВВ	вс	С	D	DD	DE	DF	DG	EA	EB	EC	ED
15ARP	50	9,5	35	28,2	60	45	46	20	5	15	51,6	44,5	34	14
18ARP	65	12	50,8	28,5	76	60	61	28	9	17	56	57	43	18
20ARP	70	12	52	33	84	65	67	32	9	22	59	62	46	18
25ARP	80	15,5	62	37,5	100	75	77	35	10	26	85	73	55	20

Туре	EE	EF	FA	FB	FC	FD	GA	GB	GC	GD	Н	J	JA	JB
15ARP	96,1	80	8	4	2,5	4,5	15	20	12	7,5	13	6,6	11	6,5
18ARP	113	101	9,7	6,5	2,5	6,6	19	25	9	15	17	8,6	14	8,5
20ARP	121	110	10	4,5	3	6,5	20	28	16	9	17	8,6	14	8,5
25ARP	158	131	12	5	2	7,5	25	35	18	11,5	20	10,5	17	10,5

Type	JC	JD	K	NA	NB	NC	ND	Р	Q	S	SD	SE	SF	U	WA	WB	wc	WD	WE	WF
15ARP	M8x1,25	12	M8x1	11	6	12,5	3	M5x0,8	34	92	9	13	44	47	15	3	3,5	M5x0,8	8	32
18ARP	M10x1,5	15	M10x1	12,7	7,5	16,5	3	M5x0,8	37	117	10	12	59	54	20,5	4	5	M6x1	10	43
20ARP	M10x1,5	15	M10x1	12,7	8,5	16,5	3	RC	40	127	11,5	14	64	57	23	4	4,5	M6x1	10	48
25ARP	M12x1,75	18	M14x1,5	19	8,5	19,5	6	RC	46	152	14,5	15	74	66	26,5	5	5,5	M8x1,25	10	55

Les pinces pneumatiques Vesta de la série MH en version simple et version double sont produites dans les quatre versions d'alésages : 16 - 20 - 32 - 50. Elles sont magnétiques. La force de serrage peut

aller de 4 à 60 kg pour une pression de 6 bar .

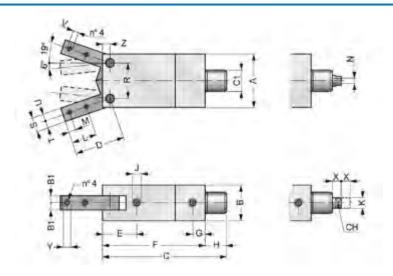
Pinces pneumatiques Série MH - MHM

Corps: Alliage d'aluminium Joints: Joints à lèvres pré-lubrifié

Fluide : Filtre à air

Pince et les broches : Acier carbonium Températures ambiante : -20°C à +80°C

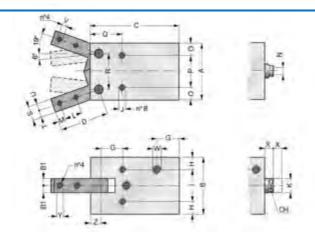
Calibre: Ø 16 ÷ Ø 50 Lubrification: Non requise


Fluide: Air filtré

Pression maxi de travail: 10 bar

MH 16

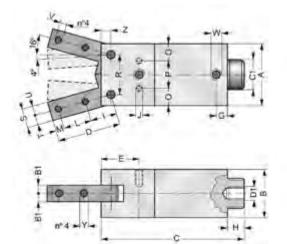
Pince Ø 16



Α	В	B1	С	ØC1	СН	D	E	F	G	Н	ØJ	ØK	L	М	ØN	R	S	Т	U	Ø۷	Х	ØY	Z
30	20	3,95	68,7	M12x1,25	5	28	21,2	56,7	7	12	M5X0,8	6	14	4	M3x0,5 (8mm)	20	8	4,5	3,5	M3x0,5	5	M4x0,7	6,2

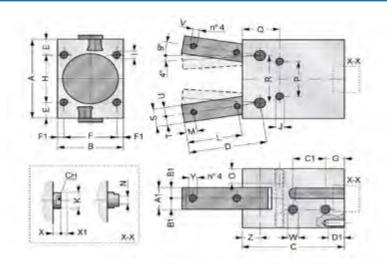
MH 20

Pince Ø 20


ı	Α	В	В1	С	СН	D	G	Н	ØJ	øĸ	L	M	ØN	0	Р	Q	R	S	Т	U	Ø۷	Х	ØY	Z	w
	32	32	3,95	53.5	6	28	13.5	7	M4X0,7	8	10	4	M3x0,7 (8mm)	7	18	19.7	20	8	4,5	3,5	M3x0,5	5	M4x0,7	6,2	M5x0.8

MH 32

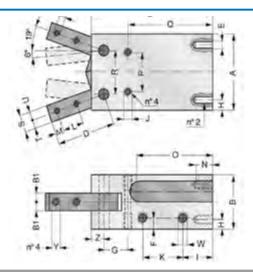
Pince Ø 32



Α	В	B1	С	ØC1	СН	D	ØD1	E	G	Н	ØJ	ØK	1
45	35	5,95	105,2	M22x1,5	10	45	M10x1,25	30,2	8	12	M5x0,8	12	19
L	М	ØN	0	Р	R	S	Т	U	Ø۷	ØW	Х	ØY	Z
20	6	M5x0,8 (10mm)) 12,5	20	28	14	8	6	M5x0,8	G1/8 "	5	M6x1	10,2

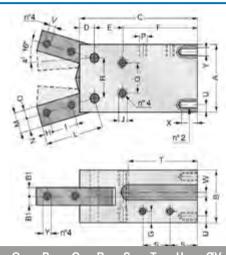
MH 50 Pince Ø 50

Α	A1	В	B1	С	C1	СН	D	D1	E	F	F1	G	Н	ØI	ØJ	ØK
80	22	60	11	100	24	18	71	15	16	48	6	21	48	M8x1,25	M8x1,25	20


L	М	ØN	0	Р	Q	R	S	Т	U	ø٧	øw	Х	X1	ØY	Z
40	10	M6x1	15	35	39	48	18	10	8	M6X1	G1/8"	5	6	M8x1,25	18

MHM 20

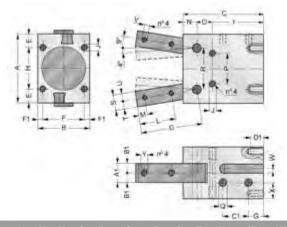
Pince magnétique Ø 20



8 28 M4X0,7 5,2 11,5 4 14,5 M4x0,7 18 41,3 20 4,5 3,5 M3x0,5 M4x0,7 6,2 19,5 10

MHM 32

Pince magnétique Ø 32

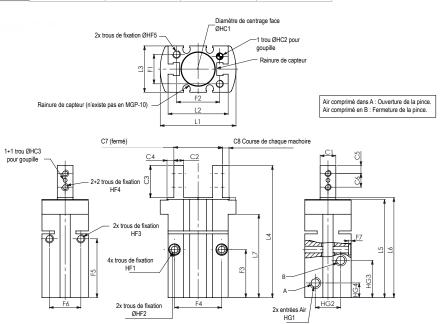


20 M6x1 (10mm) 45 14 8 6 M5x0,8 20 5,95 10,2 20 51,8 7 6 48 M5x0,8 11 M6x1 19 5

MHM 50

Pince magnétique Ø 50

71 15 16 48 48 61 M8X1,25 40 10 18 21 48 18 M6x1 M8x1,25



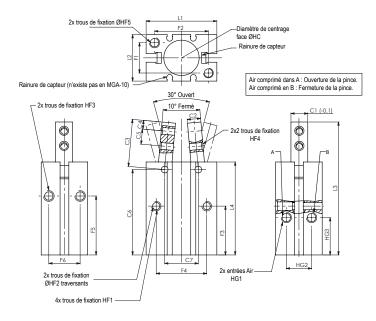
Pinces pneumatiques Série MGP

- Auto-centrante parallèlle
- Double effet (simple effet sur demande)
- Différentes options de fixation
- Interrupteur magnétique

	MGP 10	MGP 16	MGP 20	MGP 25
Fluide	Air	comprimé filtré ave	c ou sans lubrification	on.
Pression d'utilisation	2,5 ÷ 8 bar		1,5 ÷ 8 bar	
Température		5 °C ÷	- 60°C	
Force de serrage en ouverture à 6 bar	36 N	100 N	212 N	282 N
Force de serrage en fermeture à 6 bar	28 N	86 N	186 N	254 N
Course 0,3mm	4,6 mm	6,8 mm	10,4 mm	14,4 mm
Fréquence max	3 Hz	3 Hz	2 Hz	2 Hz
Poids	45 g	98 g	207 g	365 g

Modèle	L1	L2	L3	L4	L5	L6	L7	F1	F2	F3	F4	F5	F6	F7	HF1	HF2	HF3
10	29,4	23	16,4	57	43,8	44,5	34,5	12	18	23	16	27	11,4	1,3	M3x5.5mm	2,6	M3x6mm
16	38.6	30,6	23,6	67,3	50	51	42,5	15	22	24,5	24	30	16	1,3	M4x8mm	3,4	M4x4,5mm
20	50,4	42	27,6	84,8	62,3	63,3	51,8	18	32	29	30	35	18,6	1,6	M5x10mm	4,3	M5x8mm
25	64	52	33,6	102,7	74,6	76,1	63,1	22	40	30	36	36,5	22	2,1	M6x12mm	5,1	M6x10mm

Modèle	HF4	HF5	C1	C2	C3	C4	C5	C6	C 7	C8	HC1	HC2	HC3	HG1	HG2	HG3	HG4
10	M2,5x4mm N	//3x6mm	5	4	12.5	2.1	3	5,7	18,7	2,3	11 H9x2mm	2 H9x3mm	1,5 H8x4mm	М3	11	19	9
16	M3x5mm N	Л4х8mm	8	5	16.3	3.5	4	7	24,7	3,4	17 H9x2mm	3 H9x3mm	2 H8x5mm	M5	13	19	7,5
20	M4x8mm M	15x10mm	10	8	21.5	3.6	5	9	32	5,2	21 H9x3mm	4 H9x4mm	2.5 H8x8mm	M5	15	23	10
25	M5x10mm M	16x12mm	12	10	26.6	3.6	6	12	38,8	7,2	26 H9x3.5mm	4 H9x4mm	3 H8x10mm	M5	20	23.5	10,7



Pinces pneumatiques Série MGA

Pinces pneumatiques angulaires auto-centrantes

- Longue durée de vie et grande fiabilité sans entretien.
- Double effet (simple effet sur demande)
- Différentes options de fixation
- Interrupteur magnétique

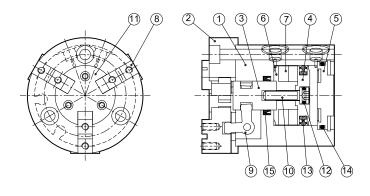
	MGA 10	MGA 16	MGA 20	MGA 25
Fluide	Air	comprimé filtré ave	c ou sans lubrificati	on.
Pression d'utilisation		2 ÷ 8	3 bar	
Température		5 °C ÷	- 60°C	
Force de serrage en ouverture à 6 bar	22 Ncm	90 Ncm	178 Ncm	356 Ncm
Force de serrage en fermeture à 6 bar	16 Ncm	72 Ncm	156 Ncm	320 Ncm
Course 0,3mm	2x20°	2x20°	2x20°	2x20°
Fréquence max	3 Hz	3 Hz	2 Hz	2 Hz
Poids	39 g	88 g	180 g	300 g

Modèle	L1	L2	L3	L4	F1	F2	F3	F4	F5	F6	HF1	HF2	HF3
10	23	16,4	53.1	38.6	12	18	23	16	27	11.4	M3X5.5mm	2.6	M3x6mm
16	30,6	23.6	63.5	44,6	15	22	24.5	24	30	16	M4x8mm	3.4	M4x6.5mm
20	42	27.6	78.9	55.2	18	32	29	30	35	18.6	M5x10mm	4.3	M5x8mm
25	52	33.6	93.6	60.4	22	40	30	36	36.5	22	M6x12mm	5.1	M6x10mm

Modèle	HF4 HF5	C1	C2	C3	C4	C5	C6	C 7	HC	HG1	HG2	HG3
10	M2.5x4mm M3x6mm	6.4	4	17.2	3	5.7	35,8	10	11 H9x1.5mm	M3	10,4	18,8
16	M3x7mm M4x8mm	8	7	22.6	4	7	40,7	16	17 H9x1.5mm	M5	13	18,3
20	M4x8mm M5x10mm	10	8	28	5.2	9	50,7	20	21 H9x1.5mm	M5	15	22,2
25	M5x10mm M6x12mm	12	10	37.5	8	12	55,8	25	26 H9x1.5mm	M5	20	23,5

Pinces Parallèles à 3 doigts Double effet - alésages de 25 à 63 mm

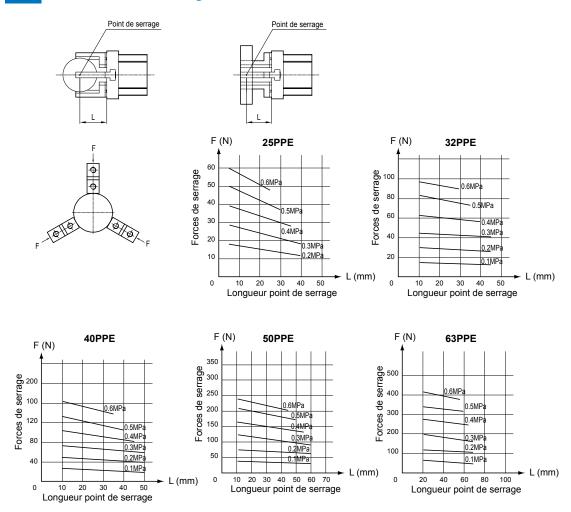
Série de pinces pneumatiques parallèles à 3 doigts. Disponibles dans 5 tailles.

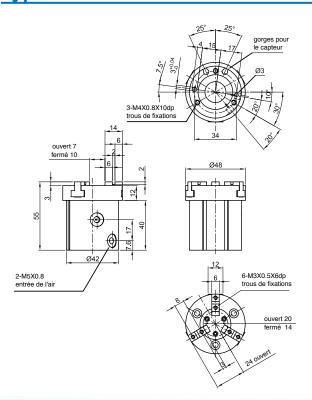

Version magnétique standard avec rainures sur le corps pour l'application directe des fins de course magnétiques.

Caractéristiques techniques

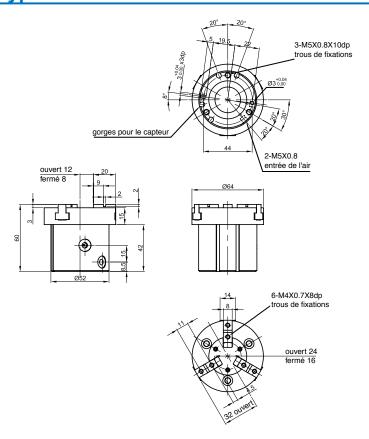
Туре	25PPE	32PPE	40PPE	50PPE	63PPE
Fluide	air comp	orimé filtré. La	lubrification, si continue.	elle est utilisée	, doit étre
Pression d'utilisation			1,5 ÷ 7 bar		
Température			0 °C ÷ + 80°C		
Fréquence max. de travail			180 cycles / mi	in.	
Lubrification		piston : a	avec ou sans lu	ubrification	
	leviers :	lubrification ne	écessaire sur le	es parties en g	lissement
Course d'ouverture (mm)	6	8	8	12	18
Connexions	M5				

Version	Code	Référence
Alésage 25 mm	075053	25PPE
Alésage 32 mm	075054	32PPE
Alésage 40 mm	075055	40PPE
Alésage 50 mm	075056	50PPE
Alésage 63 mm	075057	63PPE

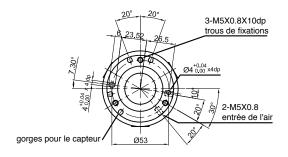

Matières

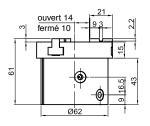

N.	Composante	Matériau
1	Corps	aluminium
2	Tête avant	aluminium
3	Tige	acier
4	Piston	aluminium
5	Culot	aluminium
6	Porte-aimant	aluminium
7	Aimant	plastoférite
8	Doigts	acier
9	Levier de commande	acier
10	Vis	acier INOX
11	Couvercle doigts	acier INOX
12	O-ring	NBR
13	Joints piston	NBR
14	O-ring culot	NBR
15	Joint de tige	NBR

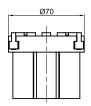
Force de serrage

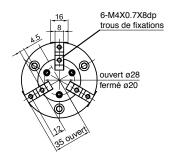


Type 25PPE

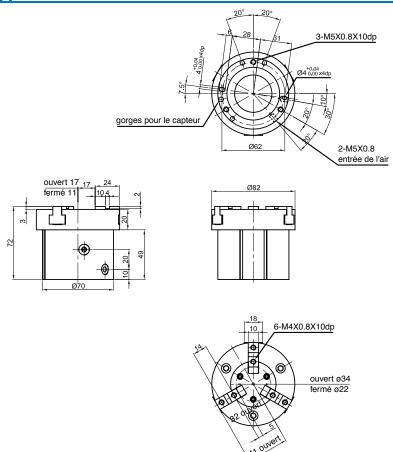


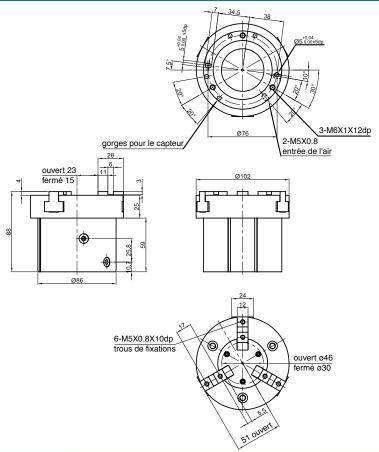



Type 32PPE



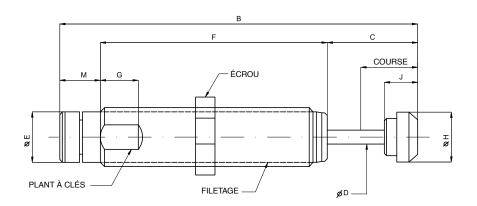
Type 40PPE





Type 50PPE

Type 63PPE



Accessoires vérins

Amortisseurs hydrauliques réglables

Température	Type DR: + 5 °C ÷ + 70°C Type DRF: + 12 °C ÷ + 90°C
Matériaux	Corps : Acier bruni Tige : Acier Inoxydable Ressort : Acier Joints : Nitrile (NBR) – Polyuréthane, Elastomère
Vitesse maximum	4 m/s

Version	Туре
Sans arrêt mécanique	DR
Avec arrêt mécanique incorporé	DRF

Référence	Course	• A	В	С	D	E	F	G	н	,	l J	М	СН	Capacité d'absorption maximum (Nm)		Mesure d'efficacité (Kg)		Poids
														Par cycle (W3)	Par heure (W4)	Min	Max	(g)
DR1008	8	10x1	66,5	14,5	2,5	8,8	40	-	6	-	6,5	12	13	1,8	3600	0,2	10	26
DR1210	10	12x1	84	18	3,5	10,8	60	-	8	-	8	6	14	4	6000	0,9	57	43
DRF1412	12,5	14x1,5	87	17,5	8	12	61	12	12	12	10	8,5	17	17	35000	0,6	90	60
DRF2019	19,1	20x1,5	117,9	30	4,8	16,8	74,7	12,7	16,8	18	11	13,2	24	25	45000	2,3	226	130
DRF2525	25,4	25x1,5	142,6	36,3	6,3	22,4	89,7	12,7	22,9	23	11	16,6	30	88	68000	9	1360	310
DRF2540	40	25x1,5	189	51,1	6,3	22,4	121,3	12,7	22,9	23	11	16,6	30	100	90000	14	2040	400

Facteurs de calcul

Symboles

W_1	= Énergie cinétique par cycle	(Nm)
W ₂	= Énergie motrice par cycle	(Nm)
Wз	= Énergie totale par cycle	(Nm)
W ₄	= Énergie totale par heure	(Nm/h)
F	= Force motrice	(N)
х	= Nombre de cycles par heure	(1/h)
s	= Course de l'amortisseur	(m)
٧	= Vitesse de la masse	(m/s)
m	= Masse à freiner	(Kg)
ME	= Mesure d'efficacité	(Kg)

Les amortisseurs sont sélectionnés selon leur capacité d'absorption d'énergie. Les valeurs de capacité déterminent aussi bien la masse décélérable que l'énergie absorbable par cycle et par heure.

Les prestations requises doivent donc être comparées dans le tableau des capacités des amortisseurs, pour s'assurer que l'énergie puisse être absorbée, transformée en chaleur et dissipée dans l'atmosphère.

Énergie – En phase de sélection, les facteurs qu'il faut considérer sont :

Énergie cinétique (W1) : c'est l'énergie engendrée par le poids et par la vitesse de la

Énergie motrice (W2) : c'est le travail donné à la force motrice qui agit sur la masse à décélérer pour la course de décélération.

Énergie totale par cycle (W3) : c'est la somme des deux valeurs précédentes et elle correspond à l'énergie à évacuer à chaque cycle.

Énergie totale par heure (W4) : c'est le produit de l'énergie totale par cycle par le nombre de cycles par heure ; c'est donc l'énergie que l'amortisseur doit dissiper

Mesure d'efficacité (ME) : c'est la masse théorique qui avec la même vitesse que la masse réelle aurait, sans force motrice, une énergie équivalente à l'énergie totale par cycle (W3) que nous avons dans l'application réelle. Ce n'est pas la masse à freiner; elle n'indique pas la force supportée par l'amortisseur.

Procédure de choix

- 1) Déterminez avec précision les données du problème, c'est à dire les facteurs de calcul m, v, F, x, s, indiqués ci-dessus.
- 2) Calculez l'énergie cinétique de la masse : W1 =0,5 . m . v2 (Nm). Choisissez un amortisseur avec une capacité pour un cycle supérieure à la valeur calculée. La course choisie doit être utilisée au point "3" ci-après
- 3) S'il y a une force motrice externe (vérin pneumatique ou hydraulique, moteur, gravité, etc.) calculez le travail effectué : $W2 = F \cdot s (Nm).$
- 4) Calculez l'énergie totale à dissiper par cycle :

W3 = W1 + W2 (Nm).

Vérifiez que cela rentre dans les limites de capacité de l'amortisseur choisi. Dans le cas contraire, il faut prendre en considération un amortisseur avec une course ou un diamètre plus élevé et éventuellement recalculer W2 et W3. Il est possible qu'il faille confronter les amortisseurs avec des courses différentes en répétant les calculs à chaque fois.

- 5) Il est opportun de choisir un amortisseur qui ait une capacité de 25 % supérieure à celle demandé dans le but :
- a) D'accepter d'éventuelles futures augmentations de l'énergie d'impact ;
- b) De travailler avec des marges de sécurité face à des vitesses difficilement quantifiables.
- c) D'assurer une longue vie à l'amortisseur, en particulier s'il opère dans un lieu poussiéreux et contaminé.

6) Calculez la mesure d'efficacité :

Tout en vérifian que le chiffre obtenu est compris avec certitude dans les limites indiquées pour l'amortisseur choisi, pour obtenir une décélération linéaire et progressive.

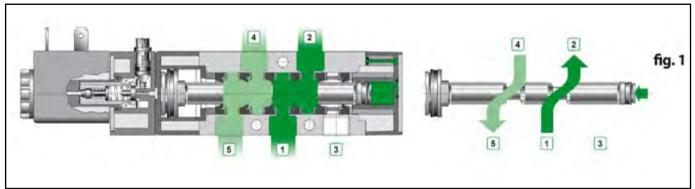
$$ME = \frac{W_3 \cdot 2}{V_2} \quad (Kg)$$

DISTRIBUTION

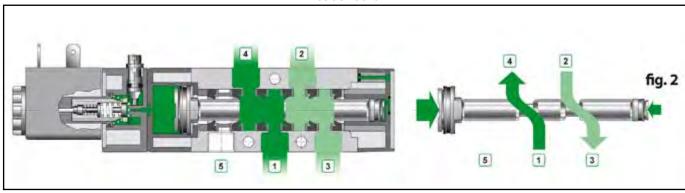
Distributeurs et électrodistributeurs série E et NAMUR

Modules pour modèles :

MPK-14 éléctrodistributeur K1/4 MPB-8 à commande directe 3/2 G1/8

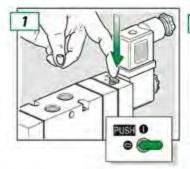

Principe de fonctionnement

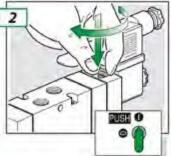
Le distributeur 5/2 est maintenu dans la position normale, les ports 4 et 5 et 1 et 2 sont connectés et la position est maintenue grâce à la pression assurée au plus petit piston (côté droit de la soupape).


Lorsque la soupape est actionnée, la même pression est introduite dans le plus grand piston.

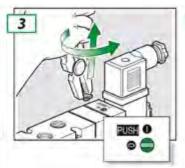
Dans la version ressort mécanique, la vanne est maintenue dans sa position normale par ce dernier. Dans les versions bistables, la position de la vanne reste dans son dernier état.

Position normale


Position travail



Commande d'entrainement manuelle



Pousser la vanne actionnée sans blocage.

Libérer le bouton pour revenir à la position normale.

actionner Pour valve. pousser en permanence la commande manuelle à 90°. Pour revenir à la position normale, pousser à nouveau et tourner de 90° dans l'autre sens.

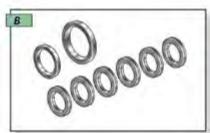
Si le M/O n' est plus nécessaire, tournez-le dans le sens antihoraire jusqu'à ce qu'il se casse.

Si le M/S requise après la rupture, un tournevis peut être utilisé.

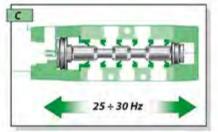
Caractéristiques

Les distributeurs VESTA G1/8, G1/4 et G1/2 sont disponibles avec la nouvelle version 3/2, 5/2 et 5/3 avec plusieurs systèmes d'actionnement et de repositionnement.

Performances de fonctionnement élevées même dans des conditions d'utilisation particulièrement complexes.


La bobine en alliage léger permet des débits nominaux élevés (D).

Elle est plus résistante face aux agents agressifs grâce au traitement superficiel au nickel (Processus Niploy) (A).


Tous les modèles de distributeurs avec G1/8, G1/4 ou G1/2 peuvent également être utilisés en l'absence de graissage.

Niploy Process offre un alliage léger

Joints autolubrifiés

Haute fréquence de travail

Flux d'air normal

Possibilité de fonctionner continuellement sans lubrification

Protégé contre l'environnement de travail

Index - distributeurs et électrodistributeurs Série E

monostable retour de pression

73.E32.V1P618

monostable retour de pression

monostable retour ressort 73.E32.V1P6M8

73.E32.V2P018

monostable retour de pression interne

interne 73.E32.V1P918

monostable centre ouvert

73.E53.V2P918

73.E52.V1P018 73.E52.V1PM18

Electrodistributeurs G1/8

Distributeurs G1/8

73.E52.V2P018 73.E52.V2PD18 73.E53.V2P618

monostable - retour

monostable - retour de pression interne de pression interne 72.E32.W1S618 72.E32.W1S918

retour ressort 72.E32.W1S6M8

monostable retour ressort 72.E32.W1S9M8

bistable 72.E32.W2S018

72.E53.W2S918

monostable interne

retour de pression

monostable retour ressort

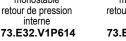
bistable bistable centre fermé 72.E53.W2S618

72.E52.W1S018 Tension 12/24vcc 48-115-220 vca

72.E52.W1SM18

Distributeurs G1/4

monostable retour de pression interne 73.E32.V1P6M4


73.E32.V1P9M4

monostable retour de pression

bistable

bistable avec différentiel

bistable centre ouvert

monostable retour de pression interne 73.E52.V1P014

retour ressort

73.E52.V1PM14

73.E52.V2P014 73.E52.V2PD14

bistable centre fermé 73.E53.V2P614

73.E53.V2P914

monostable retour de pression

72.E32W1S614

retour de pression interne 72.E32.W1S6M4 72.E32.W1S914

monostable retour ressort

monostable

retour ressort

bistable

monostable retour de pression

monostable retour ressort

Electrodistributeurs G1/4

72.E32.W1S9M4

bistable

centre ouvert

72.E52.W1SM14

Pièces d'assemblage et de rechange

72.E52.W2S014

72.E53.W2S914

ME.14 (G1/4)

ME.18 (G1/8)

PCH 014 (G1/4)

PCH 018 (G1/8)

SET1 1/4 SG SET2 1/4 SG

12-0

monostable retour de pression interne 73.E32.V1P612

monostable retour de pression interne 73.E32.V1P912

Distributeurs G1/2

10 🔼 📝 monostable retour ressort retour ressort

monostable retour de pression interne

73.E52.V1P012

monostable retour ressort

73.E52.V1PM12

73.E52.V2P012

73.E32.V1P6M2

bistable centre fermé

Electrodistributeurs G1/2

:ฌ.1/ monostable retour de pression interne

72.E32.W1S6M2

72.E32.W1S9M2

72.E32.W2S012

·- (17) monostable retour de pression interne

monostable -

72.E32.W1S912

retour ressort

bistable centre fermé 72.E52.W2S012 72.E53.W2S612

bistable centre ouvert 72.E53.W2S912

72.E52.W1S012 72.E52.W1SM12 Tension 12/24vcc 48-115-220 vca

Electrodistributeurs à action directe et pièces de rechange

BE1-...NF ¤∏.]w

BE1-...NO commande directe

BE.-..NF □[Z.]_W

BE 1M-...NF #ZIII]W

BE.M-...NF T/W

PL-BE

MBE-.4-... Electrodistributeur 3/2 - Ø 4mm juxtaposable

MBE-.8NF

MBE-.8NF-

Electrodistributeur 3/2 - G1/8

juxtaposable

SET2 1/2 SG

Index - distributeurs et électrodistributeurs Série NAMUR

Distributeurs 3/2

monostable

73.NM32.V1P-SR

Tension 12/24vcc 48-115-220 vca

73.NM32.V1P-PR

73.NM32.V2P-TP

bistable

monostable

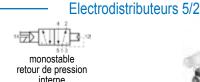
retour ressort

Electrodistributeurs 3/2

72.NM32.W2S-TP

Distributeurs 5/2

monostable retour ressort


72.NM32.W1S-SR 72.NM32.W1S-PR

73.NM52.V2P-TP

retour ressort

72.NM52.W1S-SR

73.NM52.V1P-SR

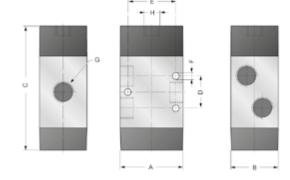
72.NM52.W1S-PR

72.NM52.W2S-TP

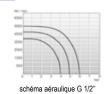
Tension 12/24vcc 48-115-220 vca

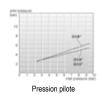
73.E32.V1P1

Distributeur 3/2


Commande pneumatique - retour pression interne

Symboles





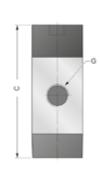
Schémas

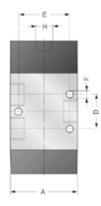
schéma aéraulique G 1/4"

	Α	В	C	D	Ε	ØF	G	н
G1/8	30	26	74	18	23	4,25	G1/8	G1/8
G1/4	40	30	81,5	20	30	4,25	G1/4	G1/8
G1/2	60	40	127	40	50	5,5	G1/2	G1/8

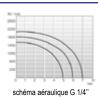
73.E32.V1P1M

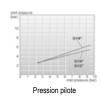
Distributeur 3/2


Commande pneumatique - retour ressort

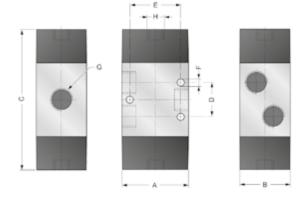


Symboles

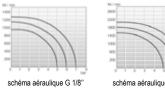


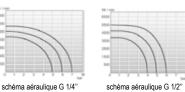


Schémas


73.E32.V2P01

Distributeur 3/2 Double commande pneumatique




Symboles

Schémas

 A
 B
 C
 D
 E
 ØF
 G
 H

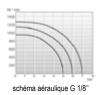
 G1/8
 30
 26
 79
 18
 23
 4.25
 G1/8
 G1/8

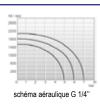
 G1/4
 40
 30
 87
 20
 30
 4.25
 G1/8
 G1/8

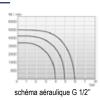
 G1/2
 60
 40
 13.2
 40
 50
 5,5
 G1/2
 G1/8

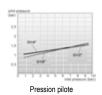
73.E52.V1P1

Distributeur 5/2 Commande pneumatique


Symboles



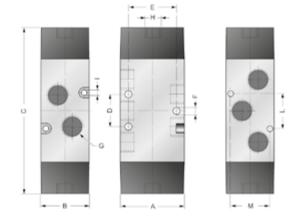




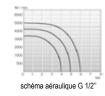
Schémas

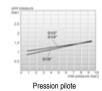
Pression pilote

73.E52.V2P1


Distributeur 5/2 Double commande pneumatique

Symboles

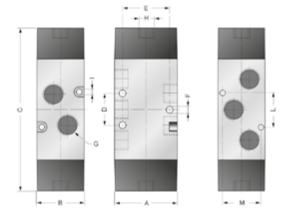


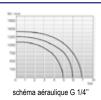


Schémas

	Α	В	c	D	Ε	ØF	G	н	ØI	L	м
1/8	30	26	96	18	23	4,25	G1/8	G1/8	3,25	28,6	20
1/4	40	30	105	20	30	4,25	G1/4	G1/8	3,25	21	24,6
1/2	60	40	172	40	50	5,5	G1/2	G1/8	_	_	_

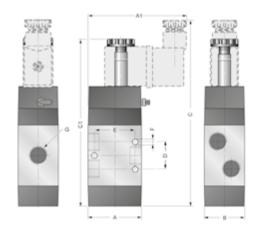
73.E53.V2P1


Distributeur 5/3 Double commande pneumatique

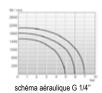

Symboles

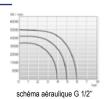


72.E32.W1S1


Electrodistributeur 3/2 Commande électropneumatique - retour pression interne

Symboles

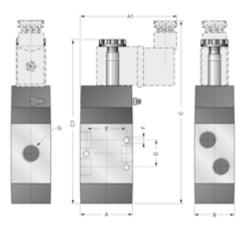


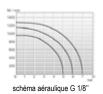


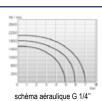
Schémas

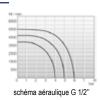
	A	A1	В	c	C1	D	Е	ØF	G
1/8	30	63	26	133	119	18	23	4,25	G1/8
1/4	40	73	30	140	125	20	30	4,25	G1/4
1/2	60	60	40	181	167	40	50	5.5	G1/2

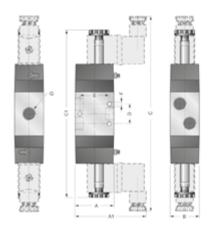
72.E32.W1SM


Electrodistributeur 3/2 Commande électropneumatique - retour ressort

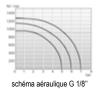



Symboles




72.E32.W2S01

Electrodistributeur 3/2 Double commande électropneumatique

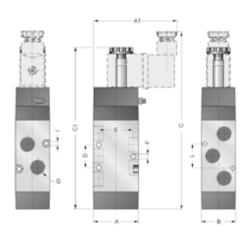


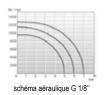
Symboles

Schémas

	Α	A1	В	c	C1	D	Е	ØF	G	ØI	L
1/8	30	63	26	150	136	18	23	4,25	G1/8	3,25	28,6
1/4	40	73	30	158	143	20	30	4,25	G1/4	3,25	21
1/2	60	60	40	221	207	40	50	5,5	G1/2	_	_

72.E52.W1S1


Electrodistributeur 5/2 Commande électropneumatique



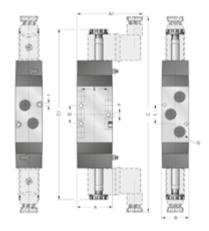
Symboles

A A1 B C C1 D E ØF G

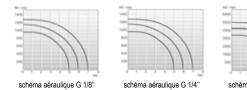
1/8 30 63 26 197 169 18 23 4,25 G1/8

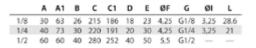
1/4 40 73 30 203 175 20 30 4,25 G1/4

1/2 60 60 40 240 212 40 50 5,5 G1/2


72.E52.W2S01

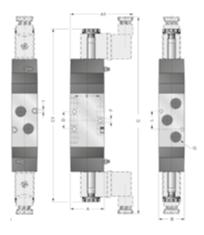
Electrodistributeur 5/2 Double commande électropneumatique

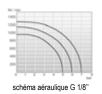


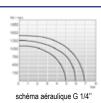

Symboles

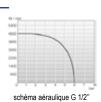
Schémas

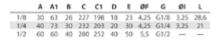
72.E53.W2S1


Electrodistributeur 5/3 Double commande électropneumatique




Symboles



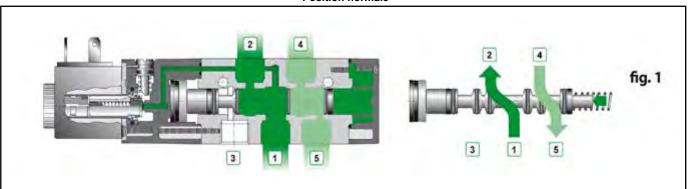


Distributeurs et électrodistributeurs mini série K

Modules pour modèles :

MPK-14 éléctrodistributeur K1/4 MPB-8 à commande directe 3/2 G1/8

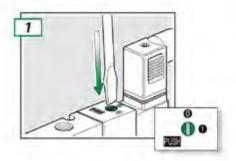
Principe de fonctionnement

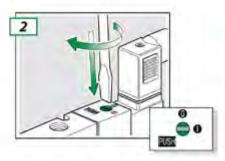

Le distributeur 5/2 consiste à assurer le maintien de la bobine dans la position de repos par l'action d'un ressort mécanique pour que la pression créée par la source d'air comprimé dans la conduite d'alimentation agisse sur la navette elle-même (g. 1) reliant les pistes 1-2 e 4-5.

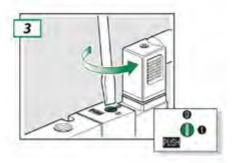
L'électrodistributeur relie le conduit 1 avec la pièce dans laquelle est logé le piston de commande. Ce dernier compare le jeu de forces créé par le ressort et la pression sur le côté opposé de la bobine, en le déplaçant de façon à connecter les canaux.

La mise hors tension du distributeur réinitialise la position de départ. La combinaison du système de ressort avec repositionnement mécanique du pneu permet d'avoir toujours le flic en position de repos, même après la chute de pression du système.

Les systèmes bistables (éléctrodistributeurs double commande ou double pneumatiques) en l'absence de connexions de signaux sont formés dans le dernier disque.

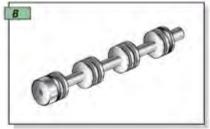

Position travail



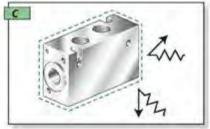


Commande d'entrainement manuelle

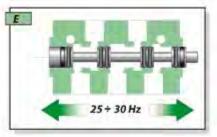
Les distributeurs mini de la série K de Vesta fonctionnent sur le principe du tiroir équilibré (voir g .1 et 2). Ils sont de très petites dimensions et intègrent de petites batteries compactes.


Un soin particulier a été apporté à la conception et la mise en œuvre de chaque composant du produit, pour permettre une haute performance fonctionnelle. Cela garantit une fréquence de fonctionnement élevée et une longue durée de vie du système .

- réduction de l'inertie des pièces en mouvement
- réduction de la friction interne
- degré plus élevé de résistance aux agents extérieurs agressifs.


Les électrodistributeurs complets avec bobine et connecteur sont conformes aux lignes directrices de l'UE relatives à la compatibilité électromagnétique (89/336 / CEE) et basse tension (73/23 / CEE) .

Possibilité de fonctionner continuellement sans lubrification


Bobine d'alliage légère

Corps en nickel traité

Haut débit nominal : (730, 1300, 4000 NI/min)

Haute fréquence de travail

Caratéristiques techniques

Port connexion	G1/8, G1/4
Diamètre	G1/8"= Ø 6 mm G1/4"= Ø 8 mm G1/2"= Ø 14 mm
Température ambiante	-10 °C ÷ +50 °C
Température	0 °C ÷ +40 °C
Lubrification	Pas nécessaire
Fluide	Air filtré
Pression	6 bar
Flux d'air	G1/8": 730 (552) NI/min G1/4": 1300 (1040) NI/min G1/2": 4000 (3500) NI/min

G 1/8"	73.K32.P1618	73.K32.P1918	73.K32.P2018	73.K52.P1018	73.K52.DP218	73.K52.P2018	73.K53.P2318	73.K53.P2618	73.K53.P2918
Pression (bar)	3,1 bar (9 bar)	3,1 bar (9 bar)	0,97 bar	3,1 bar (9 bar)	(12) 1,35 b (14) 0,97 bar	0,97 bar	3 bar	3 bar	3 bar
Fréquence maximale	30 Hz	30 Hz	33 Hz	30 Hz	30 Hz	33 Hz	10 Hz	10 Hz	10 Hz
Plage de pression	2,5 ÷ 9 bar	2,5 ÷ 9 bar	0 ÷ 9 bar	2,5 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar
G 1/4"	73.K32.P1614	73.K32.P1914	73.K32.P2014	73.K52.P1014	73.K52.DP214	73.K52.DP214	73.K53.P2314	73.K53.P2614	73.K53.P2914
Pression (bar)	3,1 bar (9 bar)	3,1 bar (9 bar)	0,97 bar	3,1 bar (9 bar)	(12) 1,35 b (14) 0,97 bar	0,97 bar	3 bar	3 bar	3 bar
Fréquence maximale	30 Hz	30 Hz	33 Hz	30 Hz	30 Hz	33 Hz	10 Hz	10Hz	10 Hz
Plage de pression	2,5 ÷ 9 bar	2,5 ÷ 9 bar	0 ÷ 9 bar	2,5 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar	0 ÷ 9 bar
G 1/2"	73.K32.P1612	73.K32.P1912	73.K32.P2012	73.K52.P1012		73.K52.P2012	73.K53.P2312	73.K53.P2612	73.K53.P2912
Pression (bar)	3,1 bar (9 bar)	3,1 bar (9 bar)	0,97 bar	3,1 bar (9 bar)		0.97 bar	3 bar	3 bar	3 bar
Fréquence maximale	15 Hz	15 Hz	18 Hz	15 Hz		18 Hz	10 Hz	10 Hz	10 Hz
Plage de pression	2,5 ÷ 9 bar	2,5 ÷ 9 bar	0 ÷ 9 bar	2,5 ÷ 9 bar		0 ÷ 9 bar			

G 1/8"	72.K32.W1S618	72.K32.W1918	72.K32.W2S018	72.K52.W1018	72.K52.WP2018	72.K52.W10E8	72.K52.W20E8	72.K53.W2S918 72.K53.W2S318 72.K53.W2S618	72.K69.W2018 72.K66.W2018 72.K99.W2018
Fréquence maximale (Hz)	27Hz AC 17Hz DC	27Hz AC 17Hz DC	42Hz AC 34Hz DC	27Hz AC 17Hz DC	42Hz AC 34Hz DC	27Hz AC 17Hz DC	42Hz AC 34Hz DC	12Hz AC 10Hz DC	27Hz AC 17Hz DC
Pression (bar)	2,5÷9 bar	2,5÷9 bar	1,5÷9 bar	2,5÷9 bar	1,5÷9 bar	0÷9 bar	0÷9 bar	3÷9 bar	3÷9 bar
Pilote de port externe	-	-	-	-	-	M5	M5	-	-
Pression	-	-	-	-	-	3÷9 bar	3÷9 bar		
G 1/4"	72.K32.W1S614	72.K32.W1914	72.K32.W2S014	72.K52.W1014	72.K52.W2014	72.K52.W10E4	72.K52.W20E4	72.K53.W2S914 72.K53.W2S314 72.K53.W2S614	72.K69.0W2014 72.K66.W2014 72.K99.W2014
Fréquence maximale (Hz)	27Hz AC 17Hz DC	27Hz AC 17Hz DC	42Hz AC 34Hz DC	27Hz AC 17Hz DC	42Hz AC 34Hz DC	27Hz AC 17Hz DC	42Hz AC 34Hz DC	12Hz AC 10Hz DC	27Hz AC 17Hz DC
Pression (bar)	2,5÷9 bar	2,5÷9 bar	1,5÷9 bar	2,5÷9 bar	1,5÷9 bar	0÷9 bar	0÷9 bar	3÷9 bar	3÷9 bar
Pilote de port externe	-	-	-	-	-	M5	M5	-	-
Pression	-	-	-	-	-	3÷9 bar	3÷9 bar	-	-
G 1/2"	72.K32.W1S612	72.K32.W1912	72.K32.W2S012	72.K52.W1012	72.K52.W2012	72.K52.W10E2	72.K52.W20E2	72.K53.W2S312	72.K53.W2S612
Fréquence maximale (Hz)	13Hz AC 11Hz DC	13Hz AC 11Hz DC	17Hz AC 16Hz DC	13Hz AC 11Hz DC	17Hz AC 16Hz DC	13Hz AC 11Hz DC	17Hz AC 16Hz DC	13Hz AC 8Hz DC	13 Hz AC 8 Hz DC
Pression (bar)	2,5÷9 bar	2,5÷9 bar	1,5÷9 bar	2,5÷9 bar	1,5÷9 bar	0÷9 bar	0÷9 bar	3÷9 bar	3÷9 bar
Pilote de port externe	-	-	-	-	-	M5	M5	-	-
Pression	-	-	-	-	-	3÷9 bar	3÷9 bar	-	-

Index - distributeurs et électrodistributeurs Série K

monostable retour de pression interne

73.K32.P1618

monostable retour de pression 73.K32.P1918

Distributeurs G1/8

bistable

73.K32.P2018

monostable retour de pression interne

73.K52.P1018

73.K52.P2018

bistable avec différentiel

bistable centre à pression 73.K52.DP218

73.K53.P2318

bistable centre fermé 73.K53.P2618

bistable centre ouvert 73.K53.P2918

monostable etour de pression interne

72.K32.W1S618

monostable retour de pression

72.K32.W1S918

bistable

72.K32.W2S018

monostable retour de pression interne 72.K52.W1018

bistable

72.K52.W2018

monostable retour de pression externe

72.K52.W10E8

-- 記]. bistable retour de pression externe 72.K52.W20E8

centre à pression 72.K53.W2S318

bistable centre fermé 72.K53.W2S618

bistable centre ouvert 72.K53.W2S918

bistable 3/2 NF retour ressort

bistable 3/2 NF

BOTT WITTER BOTT W WITTER

3/2 NF + 3/2 NO -retour ressort

Tension 12/24vcc 48-115-220 vca

72.K66.W2018

retour ressort 72.K99.W2018

72.K69.W2018

Précisez le voltage

monostable retour de pression

interne 73.K32.P161

monostable retour de pression interne

73.K32.P191

bistable

retour de pression interne

bistable

73.K52.P201

bistable centre à pression

73.K53.P231 73.K53P261.

bistable centre fermé

bistable centre ouvert 73.K53.P291

monobloc jusque 10 tailles 74.KME.14...

monostable retour de pression interne

72.K32.W1S61

interne 72.K32.W1S91

Electrodistributeurs G1/4-G1/2

bistable

72.K32.W2S01

monostable retour de pression interne 72.K52.W101

bistable

72.K52.W201

monostable retour de pression externe 72.K52.W10E

bistable retour de pression externe 72.K52.W20E

bistable centre à pression 72.K53.W2S31

bistable centre fermé 72.K53.W2S61

bistable centre ouvert 72.K53.W2S91

bistable 3/2 NF retour ressort 72.K66.W2014

82[1]/JW W[/][1]38

bistable 3/2 NF retour ressort 72.K99.W2014

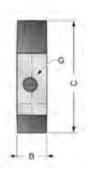
3/2 NF + 3/2 NO retour ressort 72K69.W2014

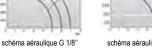
Tension 12/24vcc 48-115-220 vca

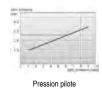
73.K32.P11

Distributeur 3/2

Commande pneumatique - retour pression interne et ressort


Symboles





Schémas

héma aéraulique G 1/4' schéma aéraulique G 1/2'

A B C D ØF G H ØH M 1/8 28 18 66.2 22.2 3.2 G1/8 G1/8 3.2 8 1/4 32 22 75.3 29.3 42 G1/4 G1/8 3.5 7.3 1/2 50 30 108 45.6 5.2 G1/2 G1/8 - 11

73.K32.P201

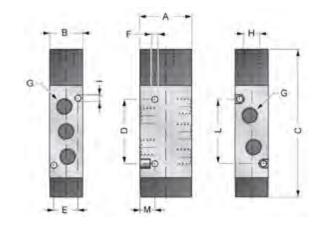
Distributeur 3/2 Double commande pneumatique

Symboles

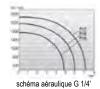
1/8 28 18 76,2 22,2 3,2 G1/8 G1/8 3,2 8 1/4 32 22 88,3 29,3 4,2 G1/4 G1/8 3,5 7 1/2 50 30 121 45,6 5,2 G1/2 G1/8 - 11 Pression pilote

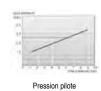
73.K52.P101

Distributeur 5/2


Commande pneumatique - retour pression interne et ressort

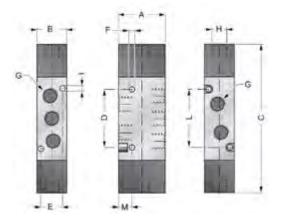
Symboles





Schémas

73.K52.P201


Distributeur 5/2 Double commande pneumatique différente

Symboles

Schémas

Pression pilote

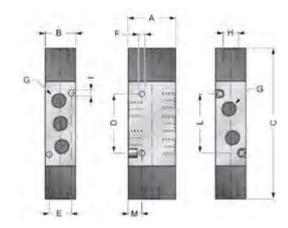
A B C D E OF G H OI L M

1/8 28 18 89 35 13 3.2 G1/8 G1/8 3.2 35 8

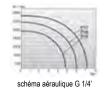
1/4 32 22 109 50 16,2 4,2 G1/4 G1/8 3.5 50 7,3

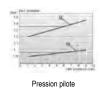
1/2 50 30 108 74,6 - 5,2 G1/2 G1/8 - 11

73.K52.DP21


Distributeur 5/2 Double commande pneumatique

Symboles





Schémas

	A	8	C	D	E	ØF	G	H	ØI	L	M
1/8	28	18	89	35	13	3,2	G1/8	G1/8	3,2	35	8
1/4	32	22	109	50	16,2	4,2	G1/4	G1/8	3,5	50	7,3

G

73.K53.P21

Distributeur 5/3

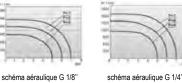
Double commande pneumatique (centre sous pression)

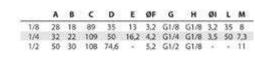
Double commande pneumatique (centre fermé)

Double commande pneumatique (centre ouvert)

Symboles

K53P2618



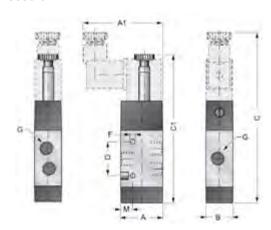

Schémas

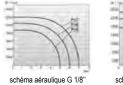
. E .

schéma aéraulique G 1/2"

154

72.K32.W1S1


Distributeur 3/2 Commande électropneumatique - retour pression interne et ressort


Symboles

K32W1S618-K32W1S614-K32W1S612

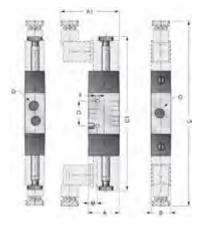
Schémas

A A1 8 C C1 D OF G OI M

1/8 28 -53 18 1125 -99 222 33 G1/8 32 8

1/4 32 -55 22 125 -107.5 29.3 42 G1/4 3.5 7.3

1/2 50 -75 30 -150 -137 45.6 52 G1/2 11

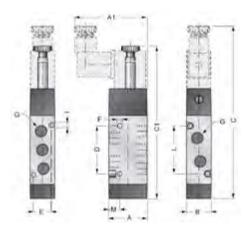

72.K32.W2S01

Distributeur 3/2 Double commande électropneumatique

Symboles

1/8 28 -53 18 170 -143 22.2 3.2 G1/8 3.2 8 1/4 32 -55 22 181 -154 29.3 4.2 G1/4 3.5 7.3 1/2 50 -25 30 -210 -180 45,6 5.2 G1/2 - 11

72.K52.W101

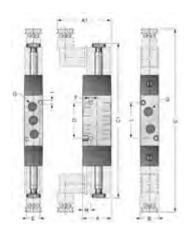

Distributeur 5/2 Commande électropneumatique - retour pression interne et ressort

Symboles

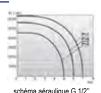
Schémas

	A	A1		C	C1	D	0	ØF	G	ØI	L	M
1/8.	28	~53	18	~125,5	112	35	-13	3.2	G1/8	3.2	35	8
1/4	32	-55	72	142.5	~129	50	16.2	42	G1/4	3.5	50.	7.3
1/2	50	-75	10	-180	-106	74,6		5.2	G1/2			11

72.K52.W201

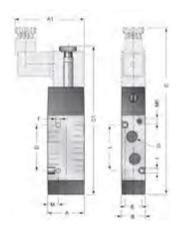

Distributeur 5/2 Double commande électropneumatique

Symboles



			A1	15	C	CI	0		201	G	60		M
1	1/8	28	~53	18	180	-152	35	13	3.2	G1/8	3,2	35	8
	1/4	32	-55	22	202	-174	50	16.2	4.2	G1/4	3.5	50	7.3
	1/2	50	-75	30	~240	-210	74,6		5,2	-G1/2	10		11

72.K52.W10E


Distributeur 5/2 Commande électropneumatique - retour pression externe

Symboles

Schémas

A 8 C D E 8F G 81 L M A1 C1

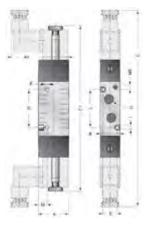
1/8 28 18 127 35 13 3,2 G1/8 3,2 35 8 53 112

1/4 32 22 142,5 50 16,2 4,2 G1/4 3,5 30 7,3 55 120

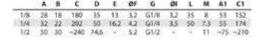
1/2 50 30 -180 74,6 - 5,2 G1/2 . - 11 -75 -166

72.K52.W20E

Distributeur 5/2


Double commande électropneumatique - retour pression externe

Symboles



na aéraulique G 1/4' schéma aéraulique G 1/2'

72.K53.W2S1

Distributeur 5/3

Double commande pneumatique (centre sous pression)

Double commande pneumatique (centre fermé)

Double commande pneumatique (centre ouvert)

Symboles

K53W2S614-K53W2S612 K53W2S914-K53W2S912

Schémas

schéma aéraulique G 1/8"

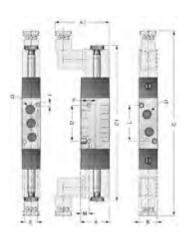
schéma aéraulique G 1/4'

schéma aéraulique G 1/2"

A A1 8 C C1 D E 8F G 8H L M

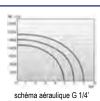
1/8 28 -53 18 180 -152 35 13 3.2 G1/8 3.2 35 8

1/4 32 -55 22 202 -174 50 162 4.2 G1/4 3.5 50 7.3


72.K66.W201

Distributeur 3/2 Double
Distributeur double 3/2 N.C - retour ressort

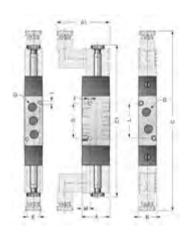
Symboles



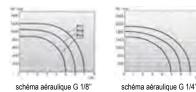
Schémas

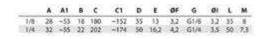
schéma aéraulique G 1/8"

	A	A1	В	c	CI	D	E	ØF	G	10	L	M
1/8	28	~53	18	180	~152	35	13	3.2	G1/8	3.2	35	8
1/4	32	-55	22	202	-174	50	15.2	4.2	G1/4	3.5	50	7.3

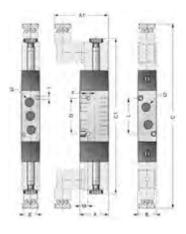

72.K99.W201

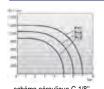
Distributeur 3/2 Double
Distributeur double 3/2 N.C - retour ressort




Symboles

Schémas


72.K69.W201


Distributeur 3/2 Double
Distributeur double 3/2 N.C - retour ressort

Symboles

oháma aáraulinua G 1/l/

	A	A1	8	C	C1	D	E	ØF.	G	91	L	M
1/8	. 28.	~53	18	180	~152	35	.13	3,2	G1/6	3.2	35	8
1/4	32	-55	22	202	-174	50	16,2	4.2	G1/4	3,5	50	7.3

Module de connexion MPV

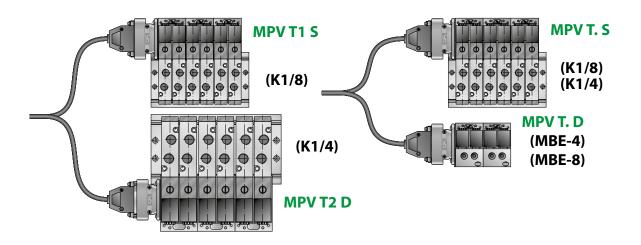
Système de connexion multiple

MPV System : connexions électriques intégrées pour les différentes versions d'électrodistributeurs.

Chaque module a été conçu en 2 tailles et pour 2 types d'électrodistibuteurs.

MPV-T1: pour connexion des distributeurs K1/8 et MPB en sortie Ø4.

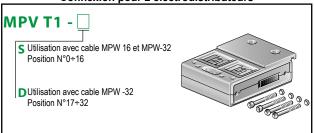
MPV-T2 : pour connexion des distributeurs K1/4 et MPB en G1/8


Les distributeurs K1/8 et K1/4 sont proposés avec les fonctions 5/2, 5/3 et double 3/2.

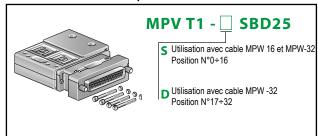
Le MPV System est compact, polyvalent et facile à monter.

Il prend en compte jusqu'à 32 électrodistributeurs en 24 DC ou 24 AC et est livré avec LED et varistor de protection en standard.

Exemple de système MPV



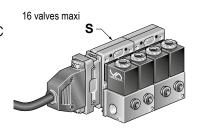
Module de connexion

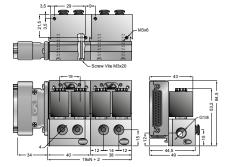

Modules pour modèles

- MPK-18 éléctrodistributeur K1/8
- MPB-4 à commande directe 3/2 tube Ø4

Connexion pour 2 électrodistributeurs

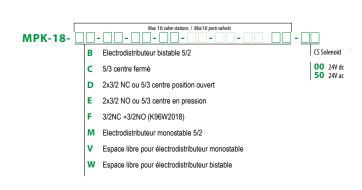
Connexion avant pour 2 électrodistributeurs

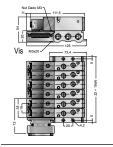


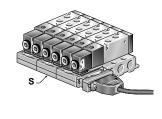

MPB-4

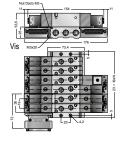
Températures ambiantes : -10°C à +50°C Plage de température moyenne : 0°C à +40°C

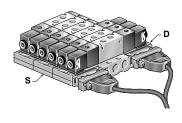
Pression de travail : 0 à 9 bar Débit nominal : 50NI/min Diamètre nominal : Ø1mm

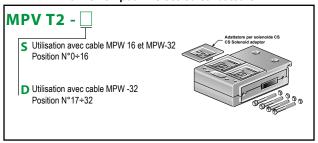



MPK - 18

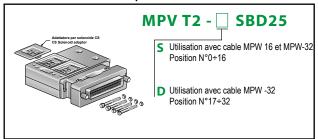

Températures ambiantes : -10°C à +50°C Plage de température moyenne : 0°C à +40°C


Pression de travail: 0 à 9 bar


Débit: 730NI/min


Module de connexion

MPV T2

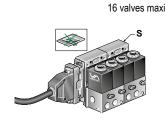

Modules pour modèles

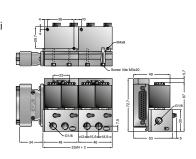
- MPK-14 éléctrodistributeur K1/4
- MPB-8 à commande directe 3/2 G1/8

Connexion pour 2 électrodistributeurs

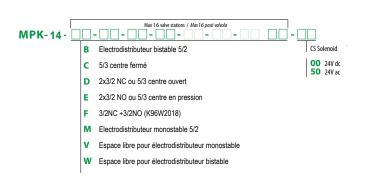
Connexion avant pour 2 électrodistributeurs

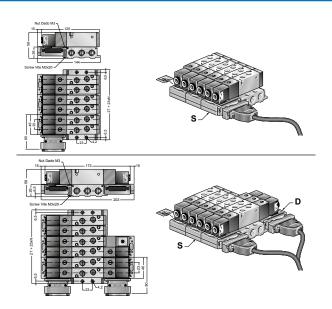
MPB - 8


Températures ambiante : -10°C à +50°C


Plage de température moyenne : 0°C à +40°C

Pression de travail: 0 à 9 bar Débit nominal: 80NI/min Diamètre nominal: Ø1,2 mm

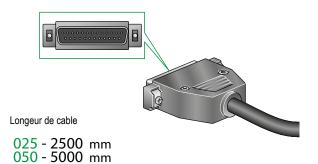



MPK-14

Températures ambiante : -10°C à +50°C Plage de température moyenne : 0°C à +40°C

Pression de travail: 0 à 9 bar

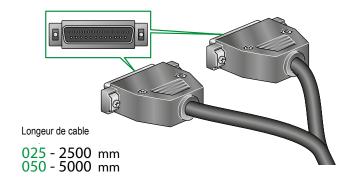
Débit: 1300NI/min



MPW - SD25

Cable pour connexion simple (cable droit)

To use with MPB-8 S and MPB-4 S (Max 16 solenoids)
Per MPB-8 S e MPB-4 S (Max 16 solenoidi)

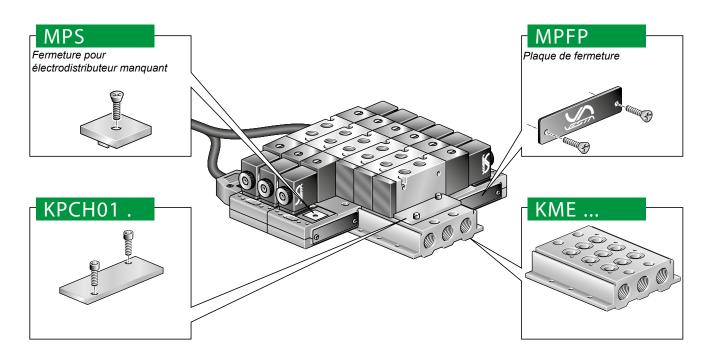


To use with and With single solenoid valves (Max 16 solenoids)

Per MPK-18 e MPK-14 Con valvole singolo solenoide (Max 16 solenoidi)

MPW - YSD25

Cable pour connexion double (cable Y)



To use with MPK-18 and MPK-14 With double solenoid valves (Max 32 solenoids)
Per MPK-18 e MPK-14 Con valvole doppio solenoide (Max 32 solenoidi)

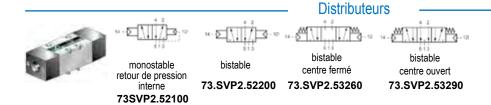
Accessoires

Cable MPW - 25

Connecteur Sub-D25

Correspondance des couleurs des cables associés aux électrodistributeurs

111 222 333 444 555 666 777 888 999 111000 111111 111222 111333 111444	Marron Vert Jaune Gris Rose Bleu Rouge Noir Violet Gris rose Rouge bleu Blanc vert
111555	. Blanc jaune
111666	
GND 18	D Blanc gris MASSA/GND D Gris marron
	. Blanc rose
	. Rose marron
21.	
	. Marron bleu
	. Blanc rouge
	. Marron rouge
25.	


Distributeurs et électro-distributeurs ISO 5599

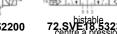
Distributeurs et électro-distributeurs ISO 5599 taille 1

Distributeurs et électro-distributeurs ISO 5599 taille 2

Distributeurs et électro-distributeurs mini **ISO 18**

Distributeurs

73.SVP18.52200 73.SVP18.522D0 73.SVP18.53230 73.SVP18.53260 73.SVP18.53290


Electro-distributeurs

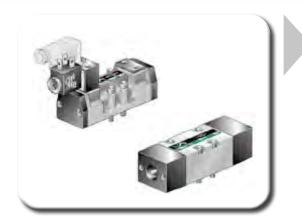
Bloc distributeurs

Pour modèles ISO 5599 et ISO 18

ISO 5599 -Embase simple taille 1 BS1

ISO 5599 -Embase simple taille 2 BS2

ISO 5599 -Embases modulaires taille 1 BTC1 - BMI1 - BTI1



Embases modulaires taille 2
BTC2 - BMI2 - BTI2

ISO VDMA 24563 -Juxtaposable modulaire taille 18mm BTC18 - BMI18 E - BMI18 EP - BTI18 - PCBM18

Distributeurs à commande manuelle

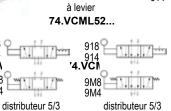
INDEX

Microvalves


74.SR

74.PFF

A levier


distributeur 5/2 à levier

9M8 9M4


018 distributeur 5/2 M14

à levier

distributeur 5/3 à levier

à levier

918 distributeur 5/3 à levier 74.VCML539...

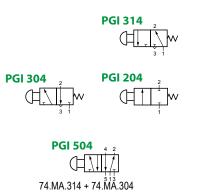
Avec bouton

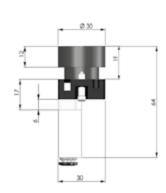
avec bouton 74.VCMT52...

Commande à pédale _

VFPP52. VFP52. Connexion G 1/4 commande à pédale

Connexion Ø4 commande à pédale 74.VFPMA304

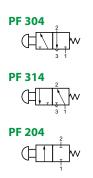


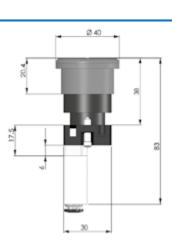

Microvalves

PGI..4

Bouton poussoir retour ressort

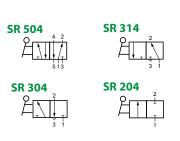


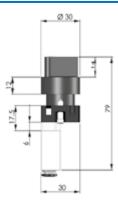




PF..4

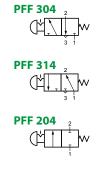
Bouton poussoir champignon retour ressort

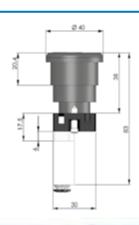




SR..4

Sélecteur de commande retour manuel





PFF..4

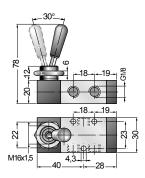
Bouton arrêt d'urgence

*Bouton en option rouge ou noir

Distributeurs à levier

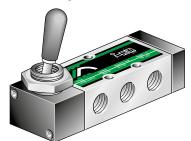
74.VCML.32..8

Distributeur 3/2 à levier - Orifice 1/8 Soufflet intégré



Symboles

74.VCML.32018


74.VCML.326M8

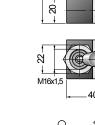
74.VCML.329M8

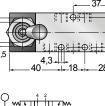
74.VCML.5..8

Distributeur 5/2 et 5/3 à levier - Orifice 1/8 Soufflet intégré

Symboles

5 13


74.VCML.52018


74.VCML.52M18

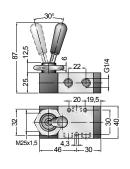
74.VCML.52618

74.VCML.536M8

74.VCML.53918

74.VCML.32..4

Distributeur 3/2 à levier - Orifice 1/4 Soufflet intégré



Symboles

74.VCML.32014

74.VCML.326M4

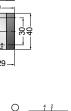
74.VCML.329M4

74.VCML.5..4

Distributeur 5/2 et 5/3 à levier - Orifice 1/4 Soufflet intégré

Symboles

74.VCML.52014
F min = 20N
F max = 40N

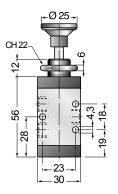

74.VCML.52M14

74.VCML.539M4

74.VCMT.32..8

Distributeur 3/2 avec bouton - Orifice 1/8

Symboles



74.VCMT.32018
F min = 20N
F max = 40N

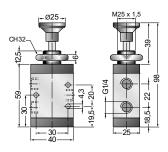
74.VCMT.326M8

Distributeurs avec bouton

74.VCMT.52..18

Distributeur 5/2 avec bouton - Orifice 1/8

Symboles


74.VCMT.52018
F min = 20N
F max = 40N

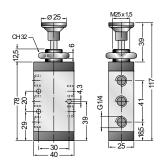
74.VCMT.52M8

74.VCMT.32..4

Distributeur 3/2 avec bouton - Orifice 1/4

Symboles

74.VCMT.32014


F min = 20N F max = 60N 74.VCMT.326M4

74.VCMT.329M4

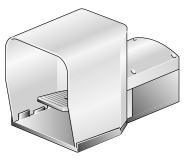
74.VCMT.52..14

Distributeur 5/2 avec bouton - Orifice 1/4

Symboles

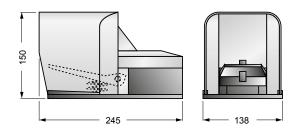
74.VCMT.52014
F min = 20N
F max = 60N

74.VCMT.52M4



Distributeurs commande à pédale

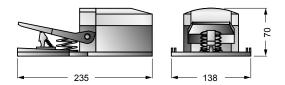
74.VFPP.52..4


Distributeur 5/2 à pédale - Orifice 1/4

Symboles

74.VFP.52..4

Distributeur 5/2 à pédale - Orifice 1/4


Symboles

74.VFP.52M14

74.VFP.52FP4

74.VFPMA.304

Distributeur 3/2 à pédale - Orifice Ø4

Symbole

74.VFPMA.304

Distributeurs à commande mécanique

INDEX

Microvalves

Avec poussoir mécanique _

poussoir mécanique 74.VCMS32...

distributeur 5/2 avec distributeur 5/2 avec poussoir mécanique poussoir mécanique

74.VCMS52...

74.VCMS52...

Avec levier à galet

74.VCLR32...



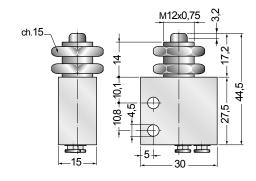
018 distributeur 5/2 avec double levier à galet

74.VCLR52018

Avec levier à galet latéral ___

74.VCLL32...

74.VCLL52M18



Microvalves

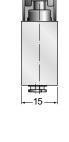
74.MV...4

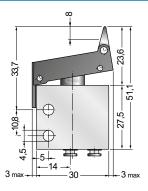
Commande mécanique 3/2 et 2/2

Symboles

74.MS...4

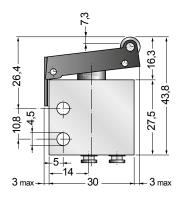
Commande mécanique 3/2 et 2/2

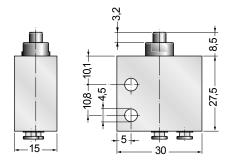




74.MR...4

Commande mécanique 3/2 et 2/2

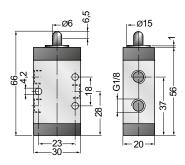

Symboles



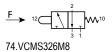
74.MA...4

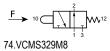
Commande mécanique 3/2 et 2/2

Symboles



Distributeurs avec poussoir mécanique


74.VCMS32M8

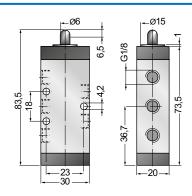

Distributeur 3/2 avec poussoir mécanique -Orifice 1/8

Symboles

F min = 20N F max = 40N

74.VCMS52M18

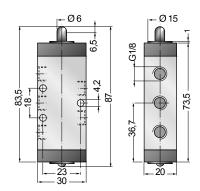
Distributeur 3/2 avec poussoir mécanique -Orifice 1/8



Symboles

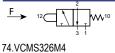
74.VCMS52M18

F min = 20N


74.VCMS52S18

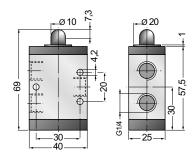
Distributeur 5/2 avec poussoir mécanique - Orifice 1/8

Symboles



74.VCMS32M4

Distributeur 3/2 avec poussoir mécanique - Orifice 1/4



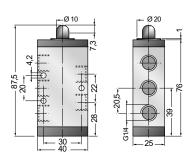
Symboles

F 10 74.VCMS329M4

F min = 40N F max = 60N

74.VCMS52M14

Distributeur 5/2 avec poussoir mécanique - Orifice 1/4

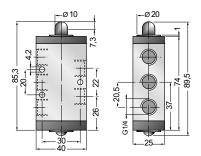


Symboles

74.VCMS52M14

F min = 40N F max = 60N

74.VCMS52S14


Distributeur 5/2 avec poussoir mécanique - Orifice 1/4

Symboles

74.VCMS52S14

Distributeurs avec levier à galet

74.VCLR32M8

Distributeur 3/2 avec levier à galet

Symboles

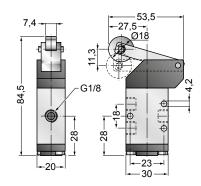
F * 10 12 12 12 12 12

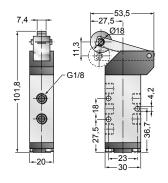
74.VCLR326M8

F min = 10N F max = 20N 74.VCLR329M8

74.VCLR52M18

Distributeur 5/2 avec levier à galet



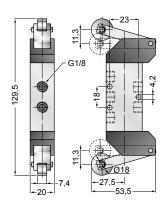

Symboles

74.VCLR52M18

F min = 10N F max = 20N

Distributeurs avec levier à galet latéral

74.VCLR52018

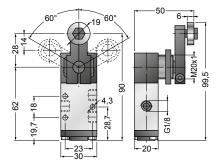

Distributeur 5/2 avec levier à galet latéral

Symboles

74.VCLR52018

74.VCLL32M8

Distributeur 3/2 avec levier à galet latéral


Symboles

74.VCLL326M8

74.VCLL329M8

74.VCLL52M18

Distributeur 3/2 avec levier à galet latéral

Symboles

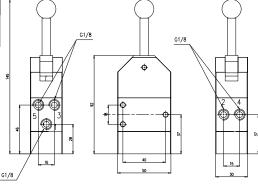
74.VCLL52M18

Distributeurs série A1

1/8" 5/3

A commande manuelle centres ouverts

Série de distributeurs à tiroir avec des joints statiques, à débit élevé, pour fixation avec des vis.


Exécutions

Version	Symbole	Article
5/3, à tirer centres ouverts monostable		74 .018.50009
5/3, à tirer centres ouverts - 3 positions		74.018.50017

Codifications

Série	Commande	Taille	Fonction	Commande
A1	MA=manuelle	1 = 1/8"	71 = 5/3 centre ouvert monostable 74 = 5/3 centre ouvert 3 positions	LT = levier en tête

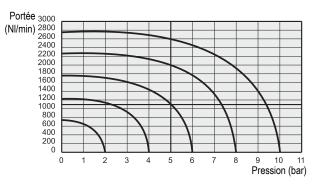
Caractéristiques techniques

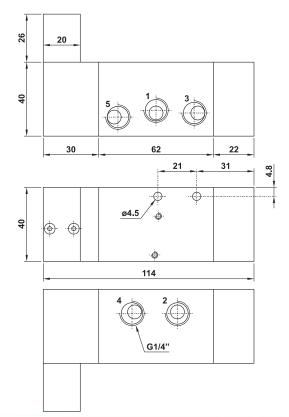
Fluide	Air comprimé filtré avec ou sans lubrification. La lubrification, si elle est utilisée, doit être continue.
Pression d'utilisation	0 ÷ 10 bar
Température	-10 °C ÷ + 80°C
Diamètre nominal	6,5 mm
Débit	650 NI/min a 6 bar avec DP 1 bar
Installation	Au choix du client
Matériaux	Corps : Aluminium Couvercle : Aluminium Têtes : Aluminium Tiroir : Aluminium nickelé chimiquement Intercalaires : Matière plastique Joints : Caoutchouc nitrile NBR Levier : Acier

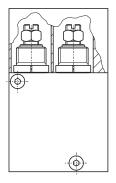
Oscillateur à commande pneumatique

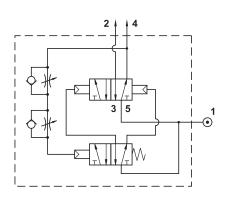
Corps: Aluminium 11S Ressorts: Inox

Joints: NBR


Tiroirs: Aluminium nickelé **Parties internes**: Laiton OT58


Fonctionnement

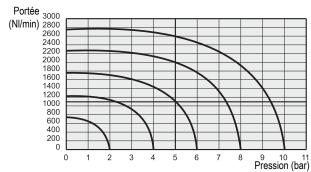

Distributeur qui, associé à un vérin double effet, lui permet d'effectuer des allers-retours en mode automatique et cela sans l'assistance de détecteurs de fin de course.


Référence	74.014.00001	
Raccordements	G1/4"	
Pression d'utilisation	2 10 bar 0.2 1 MPa	
Pression de commande (X)	3 10 bar 0.3 1 MPa	
Température de fonctionnement	max +60°C	
Intervalle de temps de régulation	0 10 s	
Fluide	Air filtré 50µ avec ou sans lubrification	

Oscillateur à cycle continu : 74.014.00001

Flip-flop

Corps: Aluminium 11S Ressorts: Inox Joints: NBR


Tiroirs: Aluminium nickelé
Parties internes: Laiton OT58

Fonctionnement

Distributeur 5/2 bistable piloté par une seule et unique commande (rep X) à l'inverse des distributeurs 5/2 bistables qui sont pilotés par deux commandes (12 et 14). Dans le cas d'un flip flop raccordé à un vérin double effet, la commande unique (rep X) ordonne tantôt la sortie de la tige du vérin tantôt la rentrée de la tige du vérin. Ainsi un signal continu appliqué sur le rep X ne permet de réaliser que la moitié d'un cycle. Pour effectuer la deuxième moitié du cycle, il faudra mettre le rep X à l'échappement et appliquer un nouveau signal.

En cas de blocage du "FLIP-FLOP" à la suite d'une coupure de la pression du réseau pneumatique, il est possiblede réarmer manuellement le dispositif en actionnant les commandes manuelles situées de chaque côté.

Raccordements	G1/4"	
Pression d'utilisation	3 10 bar 0.3 1 MPa	
Pression de commande (X)	2 10 bar 0.2 1 MPa	
Température de fonctionnement	max +60°C	
Fluide	Air filtré 50µ avec ou sans lubrification	

2 types de FLIP FLOP

A commande pneumatique

Le FLIP FLOP est actionné en appliquant un signal pneumatique en X. La pression de commande peut être différente de la pression du réseau pneumatique appliquée en 1.

Référence: 74.014.40019

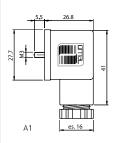
Signal pneumatique en X. La pression du réseau pneumatique appliquée en 1.

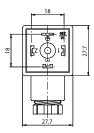
Référence: 74.014.40019

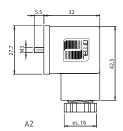
A commande électrique

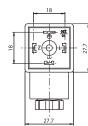
Le FLIP FLOP est actionné par un signal électrique. La pression d'air de commande doit être maintenue quand le FLIP FLOP est en fonctionnement.

Référence : 74.014.40018

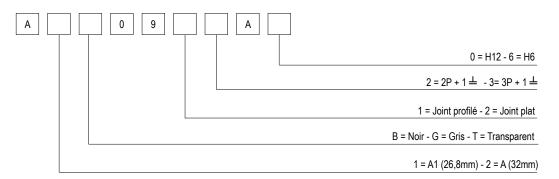

Connecteur pour électrovanne Type A - EN 175301 - 803 - A (DIN 43650)


Vissage: PG9


Diamètre câble : 6-8 mm


Caractéristiques techniques

Corps	PA66 +30% fibre de verre
Contact	CuZn (Ag)
Tension nominale (max)	250V AC / 300V DC
Courant	maxi : 16A d'exercice : 10A
Températures de travail	-40°C à +125°C
Indices de protection	IP65 / EN 60529 (DIN 40050)
Espacement	18mm
Classe d'isolation	C - VDE 0110
Position terre	H3 - H6 - H9 - H12

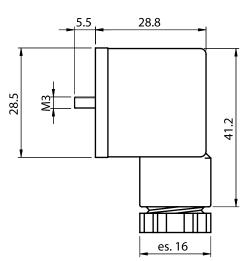


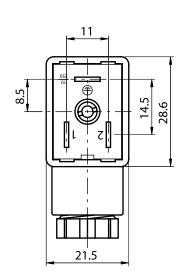
Codification

A1 G09 12A	76 -100 - 00011
A1 B09 12A	76 -100 - 00041

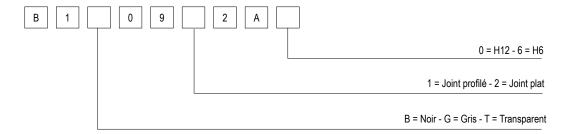
Version standard 2P+T = H12 Autres versions sur demande

Connecteur pour électrovanne Type B


Vissage: PG9


Diamètre câble : 6-8 mm

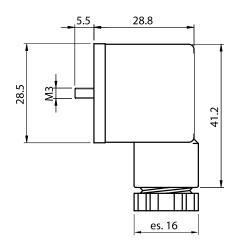
2P + 1 \

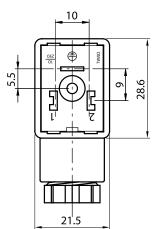

Caractéristiques techniques

Corps	PA66 +30% Fibre de verre
Contact	CuZn (Ag)
Tension nominale (max)	250V AC / 300V DC
Courant	maxi : 16A d'exercice : 10A
Températures de travail	-40°C à +125°C
Indices de protection	IP65 / EN 60529 (DIN 40050)
Espacement	11mm
Classe d'isolation	C - VDE 0110
Position terre	H6 - H12

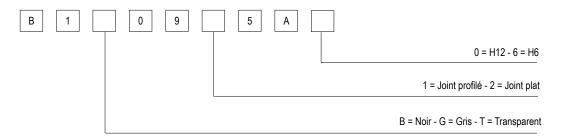
Codification

B1 B09 12A 76 -100 - 00017


Connecteur pour électrovanne Type B - EN 175301 - 803 - B (DIN 43650)


Vissage: PG9

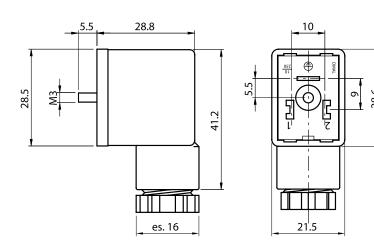
Diamètre câble : 6-8 mm


Caractéristiques techniques

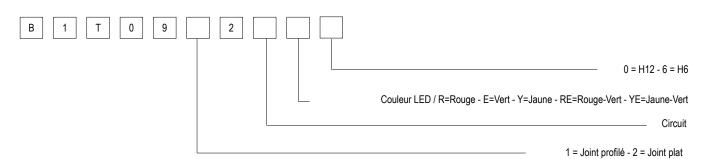
Corps	PA66 +30%Fibre de verre	
Contact	CuZn (Ag)	
Tension nominale (max)	250V AC / 300V DC	
Courant	maxi : 16A d'exercice : 10A	
Températures de travail	-40°C à +125°C	
Indices de protection	IP65 / EN 60529 (DIN 40050)	
Espacement	10 mm	
Classe d'isolation	C - VDE 0110	
Position terre	H6 - H12	

Codification

76 -100 - 00018 B1 B09 15A


Connecteur pour électrovanne Type B

Vissage: PG9


Diamètre câble : 6-8 mm

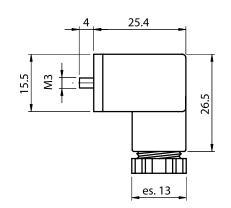
Caractéristiques techniques

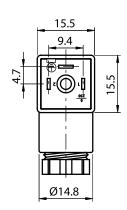
Corps	PA66 +30%Fibre de verre	
Contact	CuZn (Ag)	
Tension nominale (max)	selon circuit	
Courant	maxi : 16A d'exercice : 10A	
Températures de travail	-25°C à +90°C	
Indices de protection	IP65 / EN 60529 (DIN 40050)	
Espacement	11 mm	
Classe d'isolation	C - VDE 0110	
Position terre	H6 - H12	

Codification

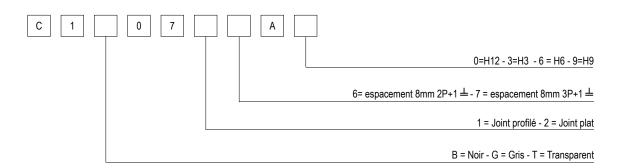
B1 T09 12 GR	76 -100 - 00019	24 VCC
B1 T09 12 HR	76 -100 - 00020	48 VCA
B1 T09 12 JR	76 -100 - 00021	110 VCA
B1 T09 12 KR	76 -100 - 00022	220 VCA

Connecteur pour électrovanne Type C - EN 175301 - 803 - C (DIN 43650)


Vissage: PG7


Diamètre câble : 4-6 mm

2P + 1 3P + 1


Caractéristiques techniques

Corps	PA66 +30%Fibre de verre
Contact	CuZn (Ag)
Tension nominale (max)	250V AC / 300V DC
Courant	maxi : 16A d'exercice : 10A
Températures de travail	-40°C à +125°C
Indices de protection	IP65 / EN 60529 (DIN 40050)
Espacement	8 mm
Classe d'isolation	C - VDE 0110
Position terre	H3 - H6 - H9 - H12

Codification

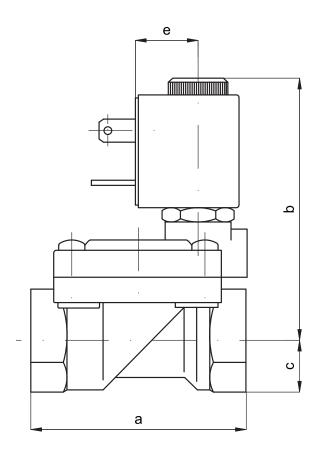
76 -100 - 00035 C1 B07 16A

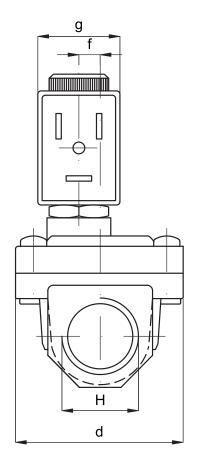
Électrovanne

A commande différentielle pour eau et vapeur

Série de vannes à commande différentielle pour fluides et air comprimé, servocommandées par une membrane. Bobine set connecteurs à commander séparément.

Caractéristiques techniques


Fluide	Air comprimé filtré avec ou sans lubrification, eau et vapeur.
Pression d'utilisation	25 bar
Viscosité max. du fluide	25 cSt (mm2/s)
Commande manuelle	Bistable encastrée
Installation	De préférence avec bobine vers le haut
	Corps : Laiton
Matériaux	Joints : NBR - FKM - EPDM
	Parties intérieures : Acier inoxydable


Version	Symbole	Туре
Avec joints NBR (-10 °C ÷ + 90 °C)	2 0 1	AEN22
Avec joints FKM (-10 °C ÷ + 130 °C)		AEV22
Avec joints EPDM (+ 140 °C)		AEP22

Filetages					
1/4" = 014	1" = 100				
3/8" = 038	1 1/4" = 114				
1/2" = 012	1 1/2" = 112				
3/4" = 034	2" = 200				

Filetages	Ø nominal	Débit	Pression différentielle bar min max		Puissance nominale			Bobine	
	mm	m3/h		AC	DC	AC (Va) Départ	AC (Va) Régime	DC (Watt)	Туре
1/4"	10	1,5	0,15	15	15	12	8	6,5	ASA33
3/8"	12	2	0,15	15	15	12	8	6,5	ASA33
1/2"	12	2,2	0,15	15	15	12	8	6,5	ASA33
3/4"	18	5,2	0,15	13	13	12	8	6,5	ASA33
1"	24	10,2	0,15	10	10	12	8	6,5	ASA33
1 1/4"	38	18	0,15	10	10	20	15	10	ASA32
1 1/2"	38	21	0,15	10	10	20	15	10	ASA32
2"	50	36	0,15	10	10	20	15	10	ASA32

н		b	С	d			g	Poids kg
1/4"	47	64	11	32	16	-	22	0,25
3/8"	60	73	14	45	16	6	22	0,45
1/2"	60	73	14	45	16	6	22	0,40
3/4"	75	75	18	55	20	8,5	22	0,66
1"	96	85	20	72	32	-	22	1,20
1" 1/4	144	95	28	102	45	-	30	3,20
1" 1/2	144	95	28	102	45	-	30	2,90
2"	152	119	35	119	48	-	30	4,50

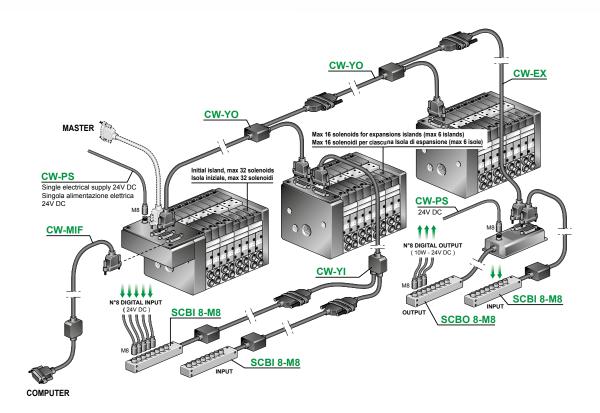
4hf Netlogic

Le 4hf Netlogic est un système intégré permettant d'exécuter et d'exploiter un ensemble complet de données numériques. La connexion multipôle 4HF Netlogic est facile à monter, facile à étendre et facile à modifier. Avec sa forme cubique, le 4hf Netlogic est un système très compact et modulable.

Caractéristiques techniques

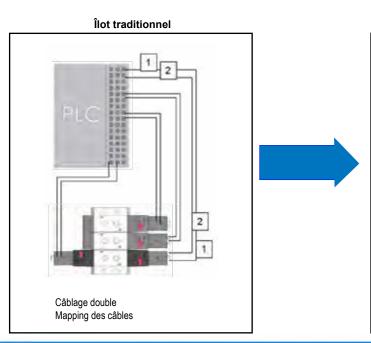
- 2 distributeurs pour chaque module.
- Avec un numéro impair des distributeurs, on utilise un module avec un seul distributeur.
- Bobine 24 V DC et 24 V AC.
- Protection avec LED ET VARISTOR

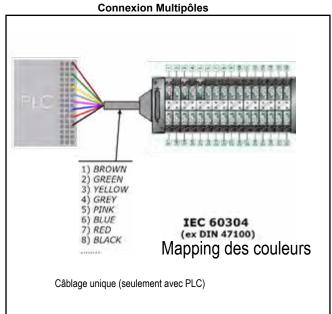
2 configurations électriques:


- 25 Pin sub-d pour max 22 bobines
- 37 Pin sub-d pour max 32 bobines

Débit	850 NI/min
Pression d'utilisation	- 0,9 (vide) / +10 bar
Protection jusqu'à	IP65
Température ambiante	-10 ÷ +50°C

- Led de communication spécifique de diagnostique
- Alimentation électrique 24V DC


Protocole de transmission	PROFIbus	DeviceNet	Ethernet/IP	CANopen	
Vitesse de transmission	9600bit/s-12Mbit/s	125-500kbit/s	10-100Mbit/s	10kbit/s-1Mbit/s	
Tension d'alimentation	24V DC (DC±10%)	24V DC (DC±10%)	24V DC (DC±10%)	24V DC	
Courant max autorisé	3A = max 68 bobines autorisées				



Connexion Multipôle

Radios commande Modèles ECO - SOC RXFM16 - EUR

Propriétés communes à tous les modèles

Alimentation 12 ou 24 volts
Possibilité de grouper 16 émetteurs sur un même récepteur
En option, nous pouvons fournir des émetteurs rechargeable sur allume-cigare

Modèle ECO page 193

- Maximum 2 canaux
- > Composition : 1 boîtier récepteur + arrêt d'urgence avec câble alimentation, 2 fils bleu canal 1 et 2 et 1 fil blanc canal auxiliaire 1 émetteur 2 canaux + stop en option : antenne externe
- ➤ Portée 40 mètres
- > Option secours manuel à boutons ou à clé

Modèle SOC page 199

- ➤ Maximum 12 canaux
- > Composition: 1 boîtier récepteur + réarmement + câble alimentation, X sorties avec connecteurs longueur câble 2 mètres en standard, 1 canal auxiliaire, 1 canal «0» activé quand on agit sur le stop de l'émetteur 1 émetteur avec stop
- ➤ En option, 1 boîtier arrêt d'urgence, antenne externe 5 mètres de câble
- ➤ Portée 100 mètres

Modèle RXFM16 page 206

- ➤ Maximum 16 canaux
- > Composition : Clavier de secrous intégré sur le boîtier récepteur

Modèle EUR page 207

- ➤ Maximum 48 canaux
- > Composition : 1 boîtier récepteur + prise et câble d'alimentation et X sorties, 1 canal auxiliaire 1 boîtier d'arrêt d'urgence avec 5 mètres de câble 1 émetteur avec stop 1 antenne externe câble longueur 5 mètres.
- ➤ Portée 100 mètres

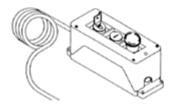
Radio commande Modèle ECO

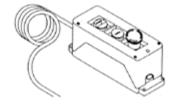
Fréquence 433.92 Mhz Homologuée CEE 2 Canaux + Stop

Caractéristiques du KIT

Le Kit est défini pour piloter à distance jusqu'à 3 fonctions en courant continu.

Les dimensions réduites, l'alimentation en courant continu sur une grande plage et la bonne portée, rendent ce produit bien adapté sur les véhicules mobiles.


L'action des fonctions est assurée par l'intermédiaire de l'ensemble «émetteur-récepteur».


Le système utilise la technologie «modulation de fréquence» qui garantit une bonne fiabilité de la transmission pendant les déplacements des usagers, en présence d'obstacles entre l'émetteur et la centrale et une bonne protection contre l'influence des équipements extérieurs (lampes, moteurs électriques etc...).

Composition du KIT

- 1 émetteur pour l'émission du type radiofréquence sur 433.92 MHZ. Il est fabriqué dans un boîtier plastique noir «ABS» (norme IP40) doté à l'arrière d'un coffre à pile. Les touches à membrane assurent une grande fiabilité et un nombre élevé de manoeuvres.
 - 1 centrale pour la réception du type modulation de fréquence. Il peut être équipé sur demande de secours manuels à clé ou à bouton.

3 fonctions

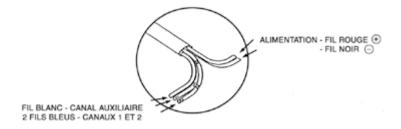
- a) ouverture ou montée + auxiliaire
- b) fermeture ou descente + auxiliaire
- c) arrêt d'urgence

La centrale est montée dans un boîtier étanche (norme IP65) en plastique jaune PVC. Sur la centrale, on trouve :

- 1 Arrêt d'urgence «ROUGE» («coup de poing»)
- 1 bouton de réarmement «VERT»
- 1 led rouge de signalisation

2 sorties à basse tension pour actionner les fonctions. Les contacts peuvent absorber au maximum 8 ampères quand la fonction est activée.

1 sortie «auxiliaire» à basse tension activée simultanément avec le canal 1 ou 2 qui peut absorber 8 ampères au maximum quand l'une des deux fonctions est activée.


La centrale est gérée par micro-contacts et présente un récepteur à modulation de fréquence de 433.92 MHZ. Totalement protégée à la norme IEC 801-2-3-4 au standard européen IETS 300220 et ETS 300683.

Installation de la centrale

Placer la centrale de préférence dans un lieu abrité des intempéries. S'assurer que les fonctions arrêt d'urgence et réarmement sont facilement accessibles.

Brancher l'alimentation de la centrale directement à la source (alimentation ou batterie) avec des câbles de section adaptée à la charge qui devra être pilotée.

NB: Les canaux 1 ou 2 ont une tension égale à l'alimentation quand ils sont activés.

Attention à ne pas détériorer la bande de Garantie lors de l'installation.

Fonctionnement

Après l'installation de la centrale, il est nécessaire d'activer l'émetteur.

Ouvrir le couvercle arrière de ce dernier et insérer une pile de 9 Volts Alcaline type transistor. Connecter cette pile en vous assurant du parfait contact puis refermer le couvercle.

Procédure pour activer les fonctions

L'identification de l'émetteur est assuré par un code digital à 34 bits dans lequel est inséré un code personnalisé par unité de transmission.

1^{er} cas: l'émetteur est fourni avec une centrale et est déjà reconnu - dans ce cas, appuyer sur la fonction et l'émission est signalée par un bref signal acoustique et reste activée tant qu'on appuie sur le bouton.

2ème cas: l'émetteur n'est pas reconnu, vous devez alors procéder comme décrit au point n°5.

Alimenter la centrale. Si le branchement est déjà effectué, vous devez déconnecter le + et le - puis les rebrancher, vous disposez alors de 2 minutes pour procéder aux opérations suivantes.

- Appuyer 3 fois consécutives sur l'interrupteur «VERT» Réarmement de la centrale et maintenir à la **3ème pression**.
- L'allumage du LED ROUGE de signalisation indique que l'accés à la mémoire est activé.
- Appuyer sur le bouton de fonction (canal 1 ou 2) de l'émetteur. Attendre que le LED ROUGE clignote, relâcher l'interrupteur VERT Réarmement.
- La procédure est terminée : votre émetteur est bien reconnu.

Les ordres envoyés par télécommande ne sont décodés que si la centrale reconnaît l'émetteur.

Cette personnalisation des émetteurs par code offre une garantie contre les fonctionnements intempestifs ou indésirables (autres émetteurs fonctionnant à proximité).

Il est possible de mémoriser jusqu'à 16 émetteurs sur une centrale en suivant cette procédure.

Le fait de mettre en mémoire le 17^{ème} émetteur conduit automatiquement à l'élimination du premier émetteur mémorisé.

Procédure pour désactiver les fonctions

Il est possible d'effacer de la mémoire de la centrale tous les émetteurs personnalisés sur celle-ci et acquis par l'opération de mise en mémoire.

Alimenter la centrale. Si le branchement est déjà effectué, vous devez déconnecter le + et le - puis les rebrancher, vous disposez alors de 2 minutes pour procéder aux opérations suivantes.

- Alimenter la centrale.
- Appuyer 3 fois consécutives sur l'interrupteur VERT Réarmement de la centrale et maintenir à la **troisième pression**.
- L'allumage du LED ROUGE de signalisation indique que la mémoire est activée.
- Prolonger la troisième pression sans aucune autre manoeuvre jusqu'à l'extinction du LED ROUGE.
- Les fonctions sont désactivées relâcher l'interrupteur VERT Réarmement.

Le LED de signalisation continuera à clignoter indiquant qu'aucun émetteur n'est reconnu par la centrale.

Pour la réactiver, il sera nécessaire de se reporter au chapitre «Procédures pour activer les fonctions».

Etat d'arrêt

Il est prévu un état d'arrêt où les trois fonctions sont désactivées. Un tel état est caractérisé par l'allumage du LED de signalisation rouge sur la centrale.

Arrêt de l'emetteur

Appuyer sur le bouton STOP. Cette manoeuvre actionne un signal acoustique intermittent. Le signal d'arrêt est prioritaire à toutes les autres manoeuvres.

Pour désactiver la fonction ARRET (signalée par l'allumage du LED ROUGE) et reprendre le fonctionnement, appuyer sur l'interrupteur VERT - Réarmement.

Arrêt de la centrale

Appuyer sur l'interrupteur «arrêt d'urgence» (coup de poing) placé sur la centrale (le LED ROUGE s'allume).

Pour réarmer, débloquer l'interrupteur «arrêt d'urgence» rouge (1/4 de tour sens horaire) et appuyer sur l'interrupteur VERT - Réarmement.

Caractéristiques techniques

I Emetteur

ALIMENTATION	Mini 7.8 Volts maxi 10 Volts
CONSOMMATION	15 μ A en attente 8 m A en transmission
FREQUENCE	433.92 MHz + - 20 KHz
PUISSANCE DE TRANSMISSION	< 10mv
MODULATION	M.F Modulation de Fréquence
CODE DE TRANSMISSION	DIGITAL 34 bits
TEMPERATURE DE FONCTIONNEMENT PORTEE	-10°C à + 70°C 30 mètres environ

Centrale

ALIMENTATION	Mini 10 Volts maxi 30 Volts
CONSOMMATION	42 mA en attente
RECEPTION	M.F modulation de fréquence F = 433.92 MHz
SENSIBILITE DE RECEPTION	2 μV S/N 12 dB
BANDE PASSANTE	300 KHz à -3 dB
ATTENUATION DU SYSTEME	70 dB
NOMBRE DE SORTIES	2 + 1 (auxiliaire)
TYPE DE SORTIE	Ouvert/Fermé à relais
DEBIT DES CONTACTS	Maxi 8 A à 30 V cc
TEMPERATURE DE FONCTIONNEMENT	- 10°C à +70°C

Consignes en cas de disfonctionnement

L'émetteur ne fonctionne pas. Le LED ROUGE clignote :

→ Avez-vous codé votre émetteur ? (reportez-vous au paragraphe n°4)

L'émetteur ne fonctionne qu'à une distance réduite de la centrale :

→ La cause peut être due à la présence de forts signaux radio-électriques à proximité. Essayer de les réduire.

Si le dysfonctionnement perdure, remplacer la pile de l'émetteur.

Vérifier le branchement de la centrale et contrôler la tension d'alimentation de celle-ci qui doit impérativement être comprise entre 10 et 30 Volts.

Si le problème persiste, contacter votre fournisseur.

Normes C.E.E

Ce produit a été déclaré conforme à la Directive 1999/5/EC (R&TTE) avec comme numéro d'homologation CE 0523 ① pour les pays suivants : France, Italie, Angleterre, Belgique et Espagne. Ce produit répond aux normes essentielles de comptabilité électromagnétiques prévues par la directive 89/336/CEF du 3 mai 1989 en conformité aux prescriptions des normes suivantes :

- IEC 801-2-3-4
- EN 55022 (limit and method of measurement of radio interference characteristics f information technology equipment)
- EN 5082-1 (Electromagnetic comptability genevic immunity standard Part 1 : Residential, commercial and light industry).

La conformité de cet équipement est attesté par la marque CE sur le produit. Nous attirons votre attention sur les raisons qui peuvent compromettre la conformité à la norme de notre produit :

Erreur d'alimentation

Erreur d'installation ou d'interprétation de la présente notice d'utilisation

Changement d'un composant ou d'un accessoire d'autre type que celui utilisé par le constructeur

Modification effectuée par du personnel non autorisé

Certificat de garantie

Votre radiocommande est garantie 1 an à partir de la date d'achat certifiée par le bon de livraison précisant le modèle livré.

Par garantie, s'entend le remplacement ou la réparation gratuite des composants reconnus défectueux à l'origine pour vice de fabrication.

Ne sont pas couverts par la garantie toutes les défectuosités dues à des négligences d'utilisation, d'erreurs d'installation ou de manutention, d'interventions par du personnel non autorisé, de transferts effectués sans précautions; enfin des circonstances qui ne peuvent être imputées à des défauts de fabrication.

L'usine décline toute responsabilité pour les dommages éventuels qui pourraient arriver directement ou indirectement à des personnes ou des biens par suite de la non observation de toutes les prescriptions indiquées sur cette notice.

En cas de garantie, l'équipement incriminé sera renvoyé au constructeur qui le réparera à ses frais.

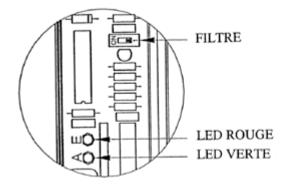
est exclu de la garantie le remplacement de la radiocommande et le prolongement de la garantie suite à une intervention sur un appareil en panne.

ATTENTION, LA RUPTURE DE L'ETIQUETTE ADHESIVE DE GARANTIE SUPPRIME TOUTES POSSIBILITES DE REPARATIONS SOUS GARANTIE

NB: Toutes les opérations indiquées ci-dessus sont valables pour la radiocommande ECO 2 canaux

Radio commande Modèle SOC

Fréquence 433.92 Mhz Homologée CEE 1 à 12 Canaux


Installations

L'indice de protection de l'unité centrale IP67, permet l'installation externe.

Cependant il reste préférable de faire le montage dans un endroit abrité (gardez à l'esprit que si vous utilisez une antenne externe cette dernière ne doit pas être entourée d'une structure métallique).

- Le montage de l'antenne (quand elle est demandée) est possible sur une base métallique. Cependant il est nécessaire qu'elle soit dans un endroit visible et écarté de toute perturbation électromagnétique (gyrophares, CB, ...)
- Alimenter le récepteur directement par la batterie en respectant les données suivantes :
 - a) Utiliser un fusible approprié en fonction de la puissance des bobines (ou élément actionné) ainsi que des auxiliaires.
 - b) Attention à bien dimensionner les câbles d'alimentation.
- Connecter les autres câbles (voir «connexion»)
- Connecter l'antenne externe sur le boîtier (quand elle est demandée, schéma implantation)

Des grosses pertubations radioélectriques peuvent provoquer l'allumage inapproprié de la LED rouge. Ceci ne cause pas de préjudice au fonctionnement mais réduit de manière conséquente la capacité de réception. Dans ce cas, vous pouvez utiliser le filtre, utiliser le petit interrupteur désigné dans le dessin ci-dessous. Utiliser ce filtre permet une meilleure fiabilité (voir distance émission) même quand plusieurs émetteurs sont utilisés à proximité de la dite radiocommande.

Caractéristiques du récepteur

Cette unité est contrôlée par un micro processeur travaillant sur une fréquence de 433.92 Mhz de la bande FM en conformité avec l'ETS 300 683 et l'IEC 801-2-3-4.

L'unité est composée de :

 Connecteurs de type fast-on pour se relier au récepteur (Boîtier de déviation en option).

La LED verte indique :

- Si la LED est allumée en continu le circuit est opérationnel et signifie qu'un émetteur au moins lui est acquis.
- Si la LED clignote : le circuit est alimenté mais aucun émetteur n'a été reconnu. (Le circuit n'est pas opérationnel, il lui faut reconnaître un émetteur).

La LED rouge indique :

- Si la Led s'allume par intermittence avec une intensité moyenne : réception du signal à la fréquence de 433.92 Mhz.
- Si la LED brille intensément : l'émission a été composée par l'arrêt d'urgence de l'émetteur.

Arrêt de la radiocommande

L'unité bénéficie d'un système d'arrêt d'émission (exécuté par l'émetteur) cet arrêt est indiqué par une LED externe rouge qui génère une lumière continue. Dans ces conditions le STOP est activé.

Quand le système est coupé, il n'y a plus de puissance sur le connecteur FAST ON. Pour remettre en marche, il est nécessaire d'utiliser le bouton vert de réinitialisation.

En option, nous pouvons vous fournir un boîtier d'arrêt d'urgence «coup de poing» permettant de signaler cette fonction.

Caractéristiques techniques

Récepteur 433.92 Mhz SUPERHETERODYNE FM

Sensibilité de réception : 2 uv S/N 12db avec 30Khz SWING.

Bande passante: 150Khz 3db.

Atténuation des «out of band» du signal : 60db.

Tension admissible: 12 Vcc/24Vcc.

Intensité en veille : 30 m a.

Intensité en fonctionnement : 190 mA (24 Vcc).

→ Outputs : ON/OFF 12A - 30 Vcc pour les relais.

Nombre de sorties: N + 1 auxiliaire + 1 sortie positive pour le mode ARU (avec les kits de fonctions 2-

4-6).

Plage de T° de W : -20°C à +70°C.

Connexions

- FIL MARRON =

- FIL BLEU =

- FILS 1.2.3.4.... = Fonctions ou canaux.

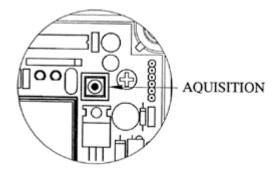
- FIL 0 = Activité en continu lorsque l'on actionne le «STOP» de l'émetteur. La LED

rouge située sur le récepteur indique que ce canal a été activé. Pour réactiver la radiocommande, utiliser le bouton vert sur le récepteur.

- FIL AUX = Canal auxiliaire en version standard, il est activé systématiquement quand

on utilise un des canaux. Nous avons la possibilité de programmer cette

fonction avec des paramètres différents.



Reconnaissance de l'emetteur

Chaque émetteur à un code différent. Il est important lors de la reconnaisance d'être dans un lieu éloigné de toute perturbation électromagnétique.

Pour faire reconnaître le code d'un nouvel émetteur.

- Ouvrir le boîtier récepteur.
- Allumer votre émetteur (appuyer sur le ON, vous devez entendre un «BIP»).
- Appuyer sur le bouton rouge «AQUISITION» (sur le circuit imprimé) et en même temps appuyer sur une des fonctions de l'émetteur, la LED verte commence à s'allumer, la reconnaissance de l'émetteur est faite. (voir si la LED verte clignote ou pas).

Quand la reconnaissance est faite vous pouvez refermer le boîtier récepteur.

PS: Un boîtier récepteur peut reconnaître jusqu'à 16 boîtiers de commande différents. Si un 17^{ème} boîtier est reconnu, il remplacera le 1^{er} et ainsi de suite.

En cas de besoin (si vous perdez votre émetteur) il est possible de le remplacer par un nouveau.

Pour cela procéder comme suit :

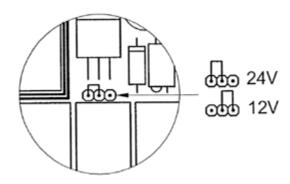
- Ouvrir le boîtier récepteur.
- Appuyer sur le bouton «ACQUISITION» pendant au moins 10 secondes sans utiliser l'émetteur. La LED verte s'allume, ceci indique que la mémoire est vide. Faites la reconnaissance comme expliqué précédemment.

Le récepteur ne peut être opérationnel s'il n'y a pas de boîtier émetteur de reconnu.

Détermination des problèmes

1 Est-ce que le LED verte «A» est allumée ?

Non: La carte électronique n'est pas alimentée.


→ Vérifier le fusible, la polarité et les câbles d'alimentation.

Oui: Mais elle clignote: pas d'émetteur reconnu,

→ Utiliser la procédure de reconnaissance.

Oui: Elle s'allume en continu.

→ Vérifier le voltage de l'alimentation. Si elle est inférieure à 12Vcc. Changer le JUMPER et le mettre à la position 12 Vcc.

2 Est-ce que la LED rouge «E» est allumée ?

Non

→ Vérifier que les fonctions «OUTPUTS» sont correctement connectées.

Oui : Elle s'allume par pulsations avec une intensité moyenne même quand l'émetteur est éteint.

→ Cela signifie qu'il ya d'autres radiocommunications de la même fréquence dans le même secteur. Connecter le filtre et utiliser le bouton approprié.

Oui: Elle s'allume par intermittence.

→ L'unité centrale a été mise en arrêt d'urgence par le biais de l'émetteur. Si cette condition n'est pas nécessaire, utiliser le bouton vert de réarmemnt ou couper brièvement l'alimentation du récepteur.

Emetteur

Caractéristiques

Le TR6 PFM est le fruit de plusieurs années d'expérience et a été conçu pour être utilisé avec les récepteurs de type RX FM6.

Ses caractéristiques sont les suivantes :

- 2 à 12 fonctions
- Transmission sur bande FM
- Portée de 50 mètres
- Alimentation par pile 9V
- Très basse consommation d'énergie
- Boîtier en ABS résistant aux chocs
- Membrane de protection du dispositif de commande résistante et fiable
- Arrêt d'urgence intégré simple d'utilisation

Instructions d'utilisation

Enlever le couvercle situé en bas à l'arrière de l'émetteur en dévissant les 2 petites vis cruciformes. Insérer une pile rectangulaire de 9V. Vérifier que les contacts sont bien montés et refermer le couvercle en prenant bien soin de remettre les vis.

Utilisation de l'emetteur

Si l'émetteur ne fonctionne pas, appuyer sur «ON» et attendre qu'il émette un «BIP» de quelques secondes, c'est la preuve qu'il est prêt à l'utilisation.

Quand il est opérationnel vous pouvez vous servir de vos fonctions. Une seule fonction peut être activée à la fois. Si vous appuyez sur plusieurs boutons en même temps le prioritaire sera le premier actionné sauf dans le cas où l'on utilise le «STOP» qui lui est prioritaire sur toutes les autres fonctions.

Il bénéficie d'un système de coupure automatique s'il n'est pas utilisé plus de 3 minutes. Après cette inactivité prolongée l'émetteur signale son arrêt en émettant 3 «BIP». Cette fonction permet non seulement de faire des économies d'énergie mais aussi d'éviter toute utilisation accidentelle du boîtier.

Les piles

Le système de contrôle de l'émetteur vous signale quand les piles ont besoin d'être changées.

Quand il est allumé et qu'il y a un problème de puissance de piles, l'émetteur émet un signal intermittent très rapproché. Vous avez encore un peu de temps pour travailler mais il faut songer à changer les piles.

Condamnation de l'emetteur

Si nécessaire, vous pouvez arrêter toute émission du boîtier en appuyant sur le bouton rouge «STOP». Ce bouton est prioritaire sur tous les autres et peut être actionné en même temps qu'une autre fonction, il sera toujours pris en compte.

Quand le bouton STOP est actionné, le boîtier émet un «BIP» court et fort, cela signifie que toute émission est interrompue.

Quand le système est coupé, il n'y a plus de puissance sur le connecteur FAST ON. Pour remettre en marche, il est nécessaire d'utiliser le bouton vert de réinitialisation.

Caractéristiques techniques

Fréquence de 433.92Mhz plus ou moins 15Khz à 22°C.

Type de modulation : Bande FM Négative > = 20Khz. Puissance de l'émetteur : EIRP < = 10mw.

Tension nécessaire : Mini 7V + maxi 10V.

Consommation moyenne à 9 Vcc

Emetteur allumé 12Ma

Emetteur en transmission 15 Ma

Emetteur en veille 10ya

Code de transmission du type 31bit digital.

Option chargeur d'accumulateur

Ce chargeur (fourni en option) accepte des tensions en 12 ou 24 Vcc avec un embout de connection pour allume cigare.

- Pour recharger votre accumulateur

Le chargeur est fourni avec un émetteur prévu pour son utilisation. Dans un premier temps, insérer la prise «JAC» dans le côté droit de l'émetteur. L'émetteur peut être chargé dans tous les cas, que ce soit en veille ou en fonctionnement.

Quand le chargement de l'émetteur commence les touches s'allument (quand vous avez l'option) et il émet un long «BIP». Le bouton «ON» s'allume, se met à clignoter et rappelle que nous sommes en charge.

L'émetteur est opérationnel et le reste 3 minutes, il peut être utilisé normalement : la LED clignote toujours, ceci indique qu'il est toujours en charge. Le chargement peut continuer avec l'émetteur éteint. La LED clignotera jusqu'à ce que l'acculmulation soit complétement chargée.

Quand vous changerez votre (pile rechargeable) accumulateur, il est nécessaire d'utiliser un modèle de type NIMH et de la mettre en charge 24 heures avant la première utilisation.

Antenne externe

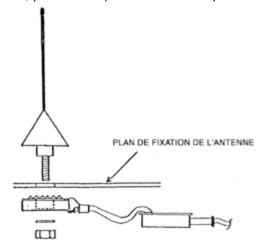
La distance d'émission d'une radiocommande peut être augmentée grâce à l'utilisation d'une antenne externe.

Cette antenne est conçue dans des matériaux innovants et spécialement pour cette radiocommande.

Caractéristiques techniques

Type: STILO 5/8 2

Fréquence de travail : 432 MHz / 434 MHz


GAIN : 5db Impédance : 50Ω

SNR: 1.5

Installation

Monter l'antenne en position verticale et éloignée de toute source électromagnétique (gyrophares, CB, portables...). Placer sur une partie visible de la structure du véhicule.

Norme EC

Ce matériel est constitué par tous les éléments et les exigences nécessaires selon la directive 99/5/EC.

La conformité du produit est certifiée par le masque de la norme «EC trade mark» sur le produit.

Attention cette conformité peut être annulée dans les cas suivants :

- Alimentation électrique incorrecte
- Installation ou utilisation incorrecte ou inappropriée suivant les éléments donnés dans la notice jointe.
- Remplacement de composants ou d'accessoires d'origine par d'autres qui ne sont pas appropriés par l'usine de fabrication des radiocommandes, ou effectué par une personne non autorisée.

Radio commande Modèle RXFM 16

Avantages

- La réinitialisation du système est automatique que ce soit lors de la mise sous tension du système ou que l'on ait activé le «STOP» de l'émetteur
- Clavier de secours intégré sur le boîtier récepteur
- Maxi 16 canaux
- Câblage 1 mètre sans connecteur

Important

Il est impératif de mettre sous tension le récepteur avant d'allumer l'émetteur. Dans le cas inverse, la reconnaissance émetteur/récepteur ne sera pas active.

Clavier

Pour que le clavier fonctionne, la led rouge doit être fixe :

- Lors de l'allumage de l'émetteur cette action est automatique.
- Si l'émetteur a été perdu ou oublié, il faut appuyer sur la touche «16» jusqu'à ce que la led rouge soit fixe
- 1/4 d'heure sans action, et le clavier s'éteint

Autres caractéristiques, identiques aux modèles SOC

Radio commande Modèle EUR

Fréquence 433.92 Mhz Homologuée CEE 2 à 48 Canaux

Composition du titre

- 1 centrale EUR 2000 CT12 MCU
- 1 émetteur série TR12 RFMC-XF (x = nombre de canaux)
- 1 boîtier de secours (arrêt d'urgence coup de poing)
- 1 antenne équipée de 10 mètres de câble
- 1 ou 2 prises DIN 41622 avec câbles numérotés (canaux + -aux)

Installation

- Installer la centrale à l'abri des agents atmosphériques (exemple : habitacle du véhicule à équiper)
- Fixer le boîtier de secours à un endroit visible et accessible
- Monter l'antenne si possible sur une base métallique en position visible et le plus loin des sources de distribution électromagnétiques (gyrophares ou moteurs etc...)
- Brancher l'alimentation de la centrale si possible directement à la batterie avec des câbles de section adéquate à la charge à piloter (utiliser un fusible de protection)
- Ouvrir le couvercle de la centrale et brancher le câble d'antenne sur la prise BNC
- Brancher le câble reliant la commande de secours sur la prise 5 broches de la centrale
- Connecter la et les prises DIN aux différentes fonctions :

FONCTIONS câbles bleus AUXILIAIRES câbles blancs POSITIF câble rouge NEGATIF câble noir

marqués de 1 à x fonctions

Caractéristiques de la centrale

Livrée dans un boîtier plastique gris PVC garantissant une bonne protection, elle ne doit pas être exposée directement aux intempéries.

Elle permet d'actionner à distance N fonctions à basse tension de 12 à 24 Vcc.

Composée d'un circuit imprimé équipé de micro-contrôleurs et d'un récepteur superhétérodyne FM (Modulation de fréquence) à la fréquence de 433.92 MHz.

Ce circuit protégé respecte les normes ETS 300683 et IEC 801.2-3-4.

Outre les prises de branchement, le couvercle comporte 4 voyants (LEDS) qui indiquent l'intensité du signal radioélectrique.

Note : il peut arriver que, par suite d'émissions radioélectriques à proximité, un voyant s'allume occasionnellement. En aucun cas, elles ne peuvent générer un fonctionnement intempestif de votre radiocommande.

Emetteur TR 12 RFMC

- De 2 à 48 canaux.
- Transmission sur bande FM.
- Portée 50 mètres.
- Alimentation par pile 9 Volts.
- Très basse consommation d'énergie.
- Boîtier en ABS résistant aux chocs.
- Membrane de protection des commandes résistante.
- Arrêt d'urgence intégré.
- Clavier lumineux en maintenant la pression sur «ON» pour utilisation nocturne (consommation de la pile importante).
- **OPTION**: rechargeable sur allume cigare.

Chaque émetteur est marqué de son propre code, formé généralement du code SOCAH et d'un code personnel lié au récepteur.

Chaque centrale peut reconnaître 16 émetteurs.

Reconnaisssance d'un emetteur

Démonter le couvercle de la centrale.

Sur le circuit nous trouvons :

- 1 bouton test ROUGE
- 1 voyant de signalisation (LED) VERT

Pour reconnaître un émetteur :

Appuyer sur le test rouge Activer simultanément 1 fonction de votre émetteur le voyant (LED) VERT s'allume :

Votre centrale a reconnu l'émetteur et la procédure étant terminée vous pouvez refermer le couvercle de votre centrale.

Cette opération peut être répétée 16 fois pour reconnaître 16 émetteurs. A la 17^{ème} reconnaissance, le premier émetteur reconnu sera désactivé.

En cas de nécessité : (ex : par suite de la perte d'un émetteur), il est possible d'effacer tous les codes acquis.

Pour effectuer cette procédure :

- Ouvrir le couvercle de la centrale.
- Appuyer sur le test ROUGE pendant 10 secondes sans utiliser votre radiocommande.
- Le voyant (LED) VERT clignote indiquant que la mémoire est désactivée.

Pour reconnaître un nouvel émetteur, refaire l'opération de reconnaissance d'un émetteur (voir cidessus).

Instructions d'utilisation

Enlever le couvercle situé en bas à l'arrière de l'émetteur en dévissant les 2 petites vis cruciformes. Insérer une pile rectangulaire de 9V. Vérifier que les contacts sont bien montés et refermer le couvercle en prenant bien soin de remettre les vis.

Utilisation de l'emetteur

Si l'émetteur ne fonctionne pas, appuyer sur «ON» et attendre qu'il émette un «BIP» de quelques secondes, c'est la preuve qu'il est prêt à l'utilisation.

Quand il est opérationnel, vous pouvez vous servir de vos fonctions. Une seule fonction peut être activée à la fois. Si vous appuyez sur plusieurs boutons en même temps le prioritaire sera le premier actionné sauf dans le cas où l'on utilise le «STOP» qui lui est prioritaire sur toutes les autres fonctions.

Il bénéficie d'un système de coupure automatique s'il n'est pas utilisé plus de 3 minutes. Après cette inactivité prolongée, l'émetteur signale son arrêt en émettant 3 «BIP». Cette fonction permet non seulement de faire des économies d'énergie mais aussi d'éviter toute utilisation accidentelle du boîtier.

Arrêt de secours

Votre radiocommande dispose de 2 fonctions d'arrêt :

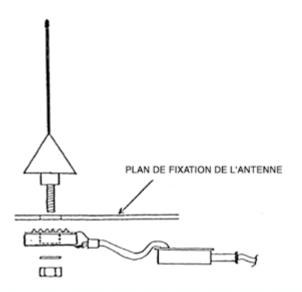
- une fonction à radiofréquence (sur l'émetteur «STOP»)
- une fonction manuelle sur le boîtier de secours, bouton ROUGE d'arrêt d'urgence

Ces fonctions sont prioritaires sur toutes les autres fonctions; elles permettent l'arrêt en cas de fausse manoeuvre. Quand le système est arrêté, aucune sortie ne pourra être activée sur la prise DIN 4622 exceptées les fonctions auxiliaires (AUX câbles blancs).

POUR REMETTRE LA RADIOCOMMANDE EN SERVICE

- déverrouiller le «coup de poing» ROUGE sur le boîtier de secours, 1/4 de tour dans le sens des aiguilles d'une montre.
- réarmer le boîtier en appuyant sur le bouton VERT.
- appuyer sur le bouton «ON» de l'émetteur

Antenne externe


La distance d'émission d'une radiocommande peut être augmentée grâce à l'utilisation d'une antenne externe.

Cette antenne est conçue dans des matériaux innovants et spécialement pour cette radio commande.

Installation

Monter l'antenne en position verticale et éloignée de toute source électromagnétique (gyrophares, CB, portables ...). Placer la sur une partie visible de la structure du véhicule.

Caractéristiques techniques

Type: STILO 5/8 2

Fréquence de travail : 432 MHz / 434 MHz

GAIN : 5db Impédance : 50Ω

SNR: 1.5

Option chargeur d'accumulateur

Ce chargeur (fourni en option) accepte des tensions en 12 ou 24 Vcc avec un embout de connection pour allume cigare.

- Pour recharger votre accumulateur

Le chargeur est fourni avec un émetteur prévu pour son utilisation. Dans un premier temps, insérer la prise «JAC» dans le côté droit de l'émetteur. L'émetteur peut être chargé dans tous les cas, que ce soit en veille ou en fonctionnement.

Quand le chargement de l'émetteur commence, les touches s'allument (quand vous avez l'option) et il émet un long «BIP». Le bouton «ON» s'allume, se met à clignoter et rappelle que nous sommes en charge.

L'émetteur est opérationnel et le reste 3 minutes, il peut être utilisé normalement : la LED clignote toujours, ceci indique qu'il est toujours en charge. Le chargement peut continuer avec l'émetteur éteint. La LED clignotera jusqu'à ce que l'accumulation soit complétement chargée.

Quand vous chargerez votre (pile rechargeable) accumulateur, il est nécessaire d'utiliser un modèle de type NIMH et de la mettre en charge 24 heures avant la première utilisation.

CARACTERISTIQUES TECHNIQUES

L'appareil est homologué sous le n° CEPT - LPI PG PGF/SEGR/2/03/336466/FO.

CENTRALE

RECEPTEUR FM superhétérodine 433.9

SENSIBILITE RECEPTION

BANDE PASSANTE

ATTENUATION SIGNAL BANDES EXTERIEURS

ALIMENTATION MINI

CONSOMMATION AU REPOS

CONSOMMATION FONCTION ACTIVEE

SORTIE/ON/OFF/RELAI

NOMBRES DE SORTIES

TEMPERATURE DE FONCTIONNEMENT

433.92MHz

2µS/N 12db avec écart 30KHz

200KHz 3db

60db

12V DC maxi 24VDC

45ma

210ma (24VDC) 12amp 30VDC

N fonction de la RC livrée de 2 à 48

-15°C +75°C

Norme CE

MARQUE «**CE**» : ce produit satisfait aux règles essentielles de comptabilité électromagnétiques prévues par la directive 1999/5/CE sous le numéro d'homologation CE pour les pays France, Italie, Angleterre, Belgique, Espagne.

La conformité de ces règles essentielles est attestée par l'apposition de la marque CE sur le produit.

ATTENTION

Les actions pouvant compromettre le bon fonctionnemnt sont les suivantes :

- Erreur d'alimentation électrique
- Mauvaise masse
- Modification
- Erreur d'installation ou utilisation impropre
- Substitution de composants ou d'accessoires par des matériaux non approuvés par le constructeur et effectuées par des personnels non autorisés.

Garantie

Votre radiocommande est garantie 1 an, date de facture SOCAH si le matériel est conforme à celui livré.

Par garantie, s'entend le remplacement ou la réparation gratuite des composants reconnus défectueux à l'origine pour vice de fabrication.

Ne sont pas couverts par la garantie, les réparations ou remplacements résultants de négligences, d'erreurs d'installation, de manutention ou d'intervention de personnel non autorisé, de transfert effectués sans précaution, enfin des circonstances qui ne peuvent être imputées à des défauts de fabrication.

La SOCAH décline toute responsabilité pour les éventuels dommages causés aux personnes et aux biens directement ou indirectement du fait de la non observation de toutes les prescriptions de la présente notice et spécialement les consignes concernant l'installation de cet équipement.

La radiocommande sera réparée en usine, frais de transport à la charge du client. Le remplacement d'un appareil par un neuf est exclu.

La garantie est prolongée le temps de réparation du matériel.

RÉSERVOIRS RÉSEAUX D'AIR

Vannes à commande pneumatique Type HF Inox

Caractéristiques techniques

La vanne pneumatique HF inox est destinée au sectionnement automatique des réseaux de fluides.

Le corps incliné à passage intégral permet de très faibles pertes de charges. Le corps et les pièces internes en acier inoxydable autorisent l'utilisation de la vanne HF sur de très nombreux fluides pour des pressions jusqu'à 16 bar et des températures jusqu'à 180°C. La tête orientable de commande tout inox, autorise l'installation de la vanne HF dans les ambiances agressives et/ou dans les ambiances à hygiène contrôlée, plus particulièrement dans les industries agro-alimentaire et pharmaceutique.

Modèles disponibles

- ½" à 2" raccordements taraudés NF arrivée sur le clapet
- ½" à 2" raccordements taraudés NF arrivée sous le clapet

CLASSEMENT SELON DIRECTIVE PED 97/23 A3§3 – Utilisation interdite sur les gaz du groupe I.

Limites d'emploi

Pression du fluide : PS	16 bar
Température du fluide : TS	-10°C/+180°C
Pression d'alimentation en air	10 bar max

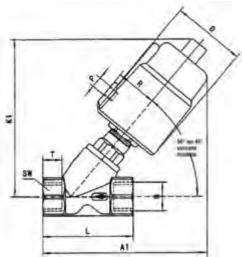
Version simple effet nf arrivé fluide sur clapet

DN	Ø Tête	Kv (m3/h)	ΔP (bar)	P alim. mini (bar)
1/2"	50	4,7	0-16	3
3/4"	50	9,5	0-16	3 - 4
1"	50	18,1	0-16	3 - 5,5
1"1/4	63	23,1	0-16	3 - 5
1"1/2	63	32,9	0-16	3 - 6,5
2"	80	52,8	0-16	3 - 6,6

Version simple effet nf arrivé fluide sous clapet

DN	Ø Tête	Kv (m3/h)	ΔP (bar)	P alim. mini (bar)
1/2"	50	4,7	0-16	4,5
3/,"	50	9,5	0-12	4,5
1"	63	18,1	0-10	4,5
1"1/4	63	23,1	0-6	4,5
1"1/2	80	32,9	0-10	4
2"	80	52,8	0-6	4

Dimensions

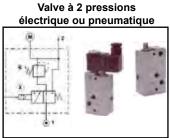

DN	Ø Tête	D	R	Р	K1	A1	L	Т
1/2"	50	60	35	G 1/8"	126	133	68	15
3/4"	50	60	35	G 1/8"	131	137	75	16
1"	50	60	35	G 1/8"	140	149	90	17
1"	63	77	43	G 1/8"	165	174	90	17
1"1/4	63	77	43	G 1/8"	175	188	116	21
1"1/2	63	77	43	G 1/8"	178	190	116	21
1"1/2	80	98	52	G 1/4"	187	204	116	21
2"	80	98	52	G1/4"	184	218	138	22

Montage et entretien

Avant toute installation, sectionner la tuyauterie en amont et en aval.

- Dépressuriser et purger la canalisation.
- Attendre son refroidissement à température ambiante.
- Porter les équipements de sécurité nécessaires pour ce type d'intervention (gants et lunettes).
- Installer la vanne en respectant le sens de montage indiqué par la flèche sur le corps.
- Raccorder l'alimentation en air à l'aide du raccord approprié.
- Vérifier le fonctionnement de la vanne à l'aide de l'indicateur repère 7.
- La vanne HF ne nécessite aucun entretien particulier.
- En cas de perte d'étanchéité en ligne, vérifier l'état du clapet repère 2 et la pression d'alimentation en air.
- En cas de fuite au presse-étoupe, vérifier l'état de la garniture repère 3.
- En cas de perte d'étanchéité sur la tête de commande, vérifier l'état du segment, repère 6.

Robinetterie et vannes industrielles


Accessoires

Pressostats

Pressostat électronique réglable KLV5

Le pressostat électronique "KLV5" permet la régulation de deux seuils d'intervention avec hystérésis réglable.

Equipé d'un écran d'affichage et d'une connexion hydraulique tournante qui permet d'orienter facilement le connecteur M12x1 dans la position la plus apte à garantir une visibilité parfaite du display en fonction du montage.

Possibilité d'activer un mot de passe pour protéger le pressostat d'éventuelles modifications du personnel non autorisé.

Caractéristiques techniques

Corps: INOX

Parties en contact avec fluide: INOX avec capteur en céramique

et joint en NBR

Montage: toutes positions

Dimensions: L 60 mm x H 93 mm Ecran d'affichage: 4 chiffres de 7.6 mm

Température: de - 20°C à + 80°C

Fréquence de commutation : 200 cycles/min

Précision: 0.5% de la valeur finale

Plage tarage: de 1% à 100% de la valeur réglable maxi

Valeur d'hystérésis : plage réglable entre 1% et 100% de la valeur

réglée

Poids: 0,35 Kg

Durée de vie: 10x10⁶ cycles à 20°C
Caractéristiques électriques:
- Tension alimentation: 12 > 30 VDC

- Raccordement électrique M12x1 (4pin)
- Protection électrique selon normes CEI EN 60529:IP65
- Charge maxi admissible sur contacts: 0.5 Ampère à 24 Volts DC
- Consommation moyenne: <50 mA
- Emissions et immunités d'interférence selon les normes EN 61.326
- Protection contre surtensions et inversions des contacts

Note: connecteur M12 non inclue

KLV5.				1	
Туре	Plage de réglage	P. max	Exécution	Signal sortie	Connexion électrique
	Bar	Bar		Sortie	electrique
KLV50.1	0 > 2	7.5			
KLV50	0 > 5	12			
KLV51	0 > 10	25	B Contacts séparés: NO + NF		
KLV52	0 > 20	50	'		M12
KLV53	0 > 50	120	C Contacts fermés : NF + NF	2 4-20 mA	Connexion M12x1 (connecteur
KLV54	0 > 100	250	Contacto territos : 141 - 141	4 20 m/t	femelle exclu)
KLV55	0 > 200	500	D Contacts ouverts : NO +NO		
KLV59	0 > 400	600	Contacts ouverts . NO +NO		
KLV59.6	0 > 600	800			

80		40
1	Do.	KLV5 - M3
	KLV5 - M12	

Connexion électrique								
Exécution	М3	M12						
Alimentation électrique	12-24 VDC	12-24 VDC						
Alimentation électrique +	Pin 1	Pin 1						
GND	Pin T	Pin 3						
NC	Pin 2	Pin 2						
NA	Pin 3	Pin 4						

	Exécution							
	В	С	D					
Pin2	→ .	→]	→					
Pin1	→]	→]	→ [.					

Pressostat électronique réglable

FL4

Les pressostats "FL4" permettent la commutation de 2 micro interrupteurs électroniques lorsque les 2 valeurs de pressions prédéfinies sont atteintes.

Ecran type panel avec système de fixation rapide.

Caractéristiques techniques

Parties en contact avec fluide: acier au carbone

Montage: toutes positions avec filetage arrière ou radial de 1/8" BSPF

Dimensions: L 32mm x H 36mm x P 36mm

Température: de 0°C à + 50°C Temps de réponse: <2.5 ms

Précision: < ± 2% de la pression maxi de réglage ± 1 chiffre (à 20°C) Valeur d'hystérésis: réglage manuel entre 1% et 10% de la pression réglée ou réglage automatique à une valeur de 3% de la pression maxi réglable

Signal analogique (sur demande): 1-5 V < ± 2.5%

Linéarité du signal analogique: ± 1% de la pression maxi réglable

Poids: 0,135 Kg

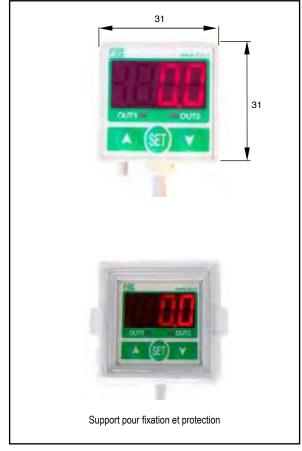
Durée de vie: 5x106 cycles à 20°C Caractéristiques électriques:

- Tension alimentation Standard: 12-24 V DC +/- 10% - Protection électrique: selon normes DIN 40050: IP 40

- Charge maxi sur contacts: 80 mA - Consommation moyenne: 55 mA

- Ecran d'affichage: 3 chiffres + ½ à 7 signals

- Signal extérieur: PNP


- Protection contre les surtensions Unités de mesure: kPa, MPa, Bar, Psi.

Raccordement électrique: câble anti-huile avec 5 connecteurs

Racordement électrique:

- Marron: DC + - Bleu: DC -- Noir: OUT 1 - Blanc: OUT 2

Options disponibles: sortie analogique

		FL		I.	1.	1.	1.	1.
Туре	Plage de tarage	P. max	Connexion hydraulique	Tarage P1 max	Tarage P1 min	Tarage P2 max	Tarage P2 min	Protection et support
	Bar	Bar	Unique	Bar				
FLW4	-1 > 1	5	1/8" BSP	indiquer la valeur si besoin d'un préréglage en usine				S Support métallique
FL41	0 > 10	15	femelle					P écran de protection

Pressostat réglable

Série K4

Les pressostats "K4" permettent la fermeture ou l'ouverture d'un contact électrique lorsque la pression prédéfinie est atteinte.

Cette pression se règle en tournant la vis externe, située sur le dessus du pressostat, en sens horaire pour l'augmenter et inversement pour la diminuer.

La vis est protégée par un bouchon.

Caractéristiques techniques

Corps: héxagonal de 24 mm en acier zingué

Montage: toutes positions

Température: de - 20°C à + 80°C

Fréquence de commutation: 200 cycle/min Précision: ± 5% de la pression maxi ce réglage à 20°C

Réglage: vis externe

Valeur fixe d'hystérésis:

exécution à membrane ~ 10% de la pression maxi de réglage.
exécution à piston ~ 20% de la pression maxi de réglage.

Poids: 0,06 Kg

Durée de vie: 106 cycles à 70 bar (1000 psi) à 20°C

Caractéristiques électriques:

- Charge Max: 2 Ampère à 48 Volt AC

1 Ampère à 48 Volt DC

- Protection électrique selon normes

DIN40050: IP54 avec capuchon de protection P1 (photo)

Options disponibles:

- K4X Acier Inox
- K4L corps en laiton
- Joint Viton, EPDM, PTFE

	K4	•			•		•	-	1.		/P1	
	age de glage	Exécu- tion	P. max	Type de contact	Type de raccorde- ment	Raccorde- ment	Matériel du corps	Type de joint	Tarage	Conditions d'utilisation	Capuchon de	
	Bar	tion	Bar	électrique	électrique	hydraulique	uu corps	Jonne	bar	a atmisation	protection	
R	0,2>2,5	Membrane	25			0 1⁄8" BSP						
S	1>12	Membrane	25			1		V		_		
SP	1>12	Piston	300		F	½" BSP 2	X AISI316L	VITON	Indiquer la	D Déclenchement	Accessoire	
Т	5>50	Piston	300	A NO	Fast-on 6.3 mm 3 M10x1	6.3 mm		L	T PTFE	valeur si besoin	en pression descendante	sur demande indispensable
٧	10>100	Piston	300	C		M10x1 4	LAITON	E	d'un préré-	U	pour protéger le pressostat	
Z	20>200	Piston	300	NF	Connection à Vis	⅓"NPT	Si rien: acier	EPDM	glage en usine	Déclenchement en pression	des saletés et de l'humidité	
						5 ¼"NPT	zingué	Si rien: NBR		montante		
Y	50>400	Piston	600			6 1⁄4"BSPT						

Pressostat réglable

Série F4

Les pressostats de la série «F4» autorisent la commutation d'un micro-interrupteur une fois atteinte une valeur de pression prédéfinie par l'utilisateur.

En agissant sur la vis centrale lors de l'exécution de P2 ou en interceptant le grain de régulation posté à l'intérieur de l'instrument avec une clé hexagonale de 2 mm, en tournant dans le sens des aiguilles d'une montre ou inversement, le point d'intervention est respectivement incrémenté ou diminué.

Caractéristiques techniques

Corps: héxagonal de 24 mm en acier zingué

Montage: toutes positions

Température: de - 25°C à + 80°C

Fréquence de commutation: 90 cycles/min

Précision: ± 4% de la pression maxi ce réglage à 20°C

Réglage: vis externe

Valeur fixe d'hystérésis:

- exécution à membrane ~ 10% de la pression maxi de réglage.
- exécution à piston ~ 15% de la pression maxi de réglage.
- Y exécution ~ 25% de la pression maxi de réglage.

Poids: 0,05 Kg

Durée de vie: 106 cycles à 70 bar (1000 psi) à 20°C

Caractéristiques électriques:

- Charge Max: 0.5 Ampère à 250 Volt AC
- Protection électrique selon normes DIN 40050:

IP65 pour éxécution M2/M3

IP54 pour éxécution P3/P1

- -Echanges contact NO et NF (SPDT)
- Connexion électrique selon norme DIN 43650 pour M2 et M3

Options disponibles:

- -F4_X avec connexion fluide AISI316L
- F4_L corps laiton
- WF4 commutateur vide avec réglage pression de -0.15 à -0.8 [bar]

Note: Certificat ATEX seulement pour éxécution M2 et M3

P3 Exécution	187	
M2 Exécution	66 Ø 27	
M3 Exécution	Ø 27	1 2 NA N.C.

	F4.							1.		<i>I.</i> .	/P1
	ge de glage	Exécu- tion	P. max	Matériaux corps	Connexion hydrau-	Type de joint	Type de contact	Tarage	Condition	Type de connexion	Capuchon de
	Bar		Bar		lique	,,,,,,,,	électrique	bar		électrique	protection
R	0,2>2,5	Membrane	25		0						
S		Membrane	25		⅓" BSP	l v					
SM	1>12	Membrane	150	X AISI316L	1	VITON			D	Р3	
SP		Piston	300	AISISTOL	1/4" BSP	Т		Indiquer	Déclenche- ment	6.3x0.8 Fast-on	Accessoire
Т	5>50	Piston	300	L Laiton	2 1⁄8"BSPT	PTFE	G	la valeur	en pression	Fa8t-011	sur demande
TM	5>50	Membrane	150	Laiton	3	E	Contacts dorés	si besoin	descendante	M2 Connecteur	indispensable
V	10>100	Piston	300	B	M10x1	EPDM	C: diam.	d'un	U	16x16	pour protéger le pressostat
VM	10>100	Membrane	150	Laiton nickelé	4 ½"NPT	н	Si rien: argent	préré- glage	Déclenche-	840	des saletés et
Z	20>200	Piston	300	Si rien	5	HNBR		en usine	ment en pression	M3 Connecteur	de l'humidité
Υ	50>400	Piston	600	indiqué : acier zingué	1⁄4"NPT	Si rien:			montante	30x30	
	Commutat	teur vide régla	ble		6 ¼"BSPT	NBR					
WF4		Membrane	25		/4 D3P1						

Générateur d'impulsion

Corps: Aluminium anodisé

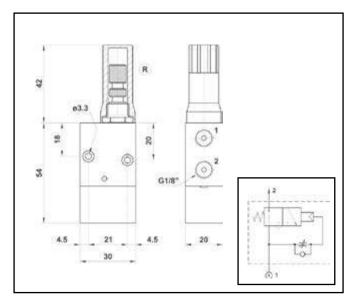
Ressort : Inox Joints : NBR

Parties internes: Laiton OT58

Caractéristiques techniques

Raccordements	G1/8"
Température de travail	max +60°C
Pression de travail	2 10 bar 0.2 1 MPa
Fluide	Air filtré 50µ avec ou sans lubrification
Intervalle de temps de régulation	0 15s

Désignation	Référence
Vanne à impulsion NO	74.000.20010
Vanne à impulsion NF	74.000.20009

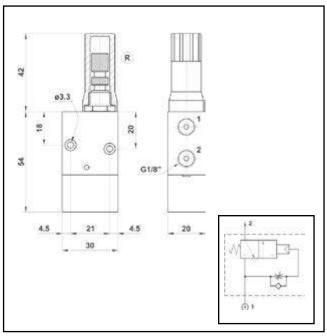

Fonctionnement

74.000.2000010

Normalement ouvert

Dispositif pneumatique qui produit une impulsion d'une durée déterminée par le réglage de l'opérateur sur la vis du régulateur R. L'impulsion est émise dès qu'un signal maintenu est appliqué en 1 sur le générateur par l'intermédiaire d'une vanne 3/2.

L'impulsion cessera après une durée déterminée par le réglage de la vis R. Si pendant cette période le signal est interrompu, l'impulsion stoppera avant d'atteindre la durée complète prévue par le réglage sur la vis R. Pour répéter l'opération, le signal en 1 doit être stoppé puis appliqué de nouveau.

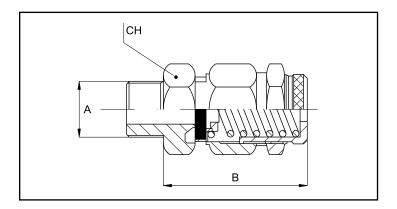


74.000.20009

Normalement fermé

Dispositif pneumatique qui, lorsqu'il est alimenté en 1, produit un signal pneumatique en 2 au bout d'une durée déterminée par le réglage de la vis du régulateur R. Pour stopper le signal en 2 il suffit d'interrompre le signal en 1.

La différence avec la version NO (10.001.4) c'est que le réglage sur la vis R modifie la durée de la temporisation et non pas la durée du signal lui-même.


Soupapes de sécurité

Série de vannes de sécurité réglables, avec plage de réglage de 3 à 7 bar. Pour montage sur réservoirs, ou dans toutes les situations où l'application requiert que la pression existante ne dépasse jamais la valeur fixée.

Caractéristiques techniques

Fluide	Air comprimé filtré avec ou sans lubrification. La lubrification, si elle est utilisée, doit être continue						
Pression d'utilisation	3 ÷ 7 bar						
Température	-10 °C ÷ + 90°C						
Diamètre nominal	1/8" - 1/4"= 6 mm	3/8"= 10 mm	1/2"= 11 mm	3/4" - 1"= 18 mm			
Débit	1/8" - 1/4"= 1.600 l/min	3/8"= 3.400 I/min	1/2"= 3.700 I/min	1"= 7.900 I/min			
Matériaux	Corps, obturateur, vis de réglage, contre-écrou : Laiton Ressort : Acier C98 Joints : Caoutchouc nitrile (NBR)						

Exécutions									
Version	Symbole	Code	Article						
1/8"		030951	1VS						
1/4"		030952	2VS						
3/8"	A- ◯ ₩ B	030953	3VS						
1/2"		030954	4VS						
3/4"	-	030955	5VS						
1"		030956	6VS						

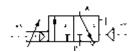
Variantes	Sigle
Calibrage fixe avec certificat selon D.E. 97/23/CE et sur demande aussi ISPESL *	CC
Versions spéciales sur demande **	/ S

^{*} Les dimensions d'encombrement de la soupape certifiée sont différentes des dimensions standard; à demander.

La soupape certifiée est disponible uniquement avec calibrage fixe. Après la sigle de la variante, spécifier le calibrage souhaité en bar.

А	В	СН
1/8"	34	15
1/4"	34	15
3/8"	53	20
1/2"	53	22
3/4"	70	30
1"	70	30

^{**} Disponibles uniquement sur quantités.


Temporisateur pneumatique Secondes ou minutes

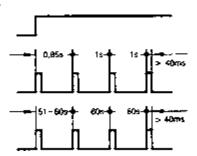
Caractéristiques techniques

Construction	Temporisateur pneumatique- mécanique avec présélecteur fixe (sec ou min)
Fixation	Modèle à encastrer : par 2 trous transversants dans le corps (montage en tableau)
Raccordement	M5
Position de montage	Indifférente
Température ambiante	0 °C à +60 °C
Température du fluide	+60 °C
Fluide	Air filtré non lubrifié 40 μm

Rappel	Manuel par touche pneumatique > 2 bar
Temps de rappel	200-500 ms
Plage de temps	1–999 s ou 1–99 999 min
Erreur de temps	Temporisateur secondes ±2,0 %
de cycle de valeur réglée	Temporisateur minutes ±0,5 %
Écart de temps	max. –15 % dans la 1ère unité de temps
Témoin	3 ou 5 chiffres
Chiffres	2x4 mm, blanc

Pression min. admissible	2 bar
Pression nominale	6 bar
Pression de déclenchement	2–6 bar pour X

Le temporisateur pneumatique se compose d'un générateur d'impulsions et d'un compteur à présélection. La valeur présélectionnée est saisie par les touches de présélection.

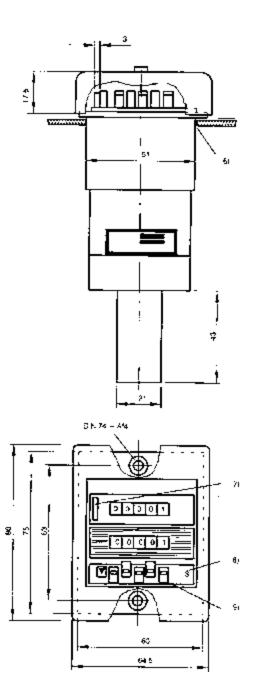

Les touches de présélection sont protégées contre toute modification inopinée par la touche de validation blanche.

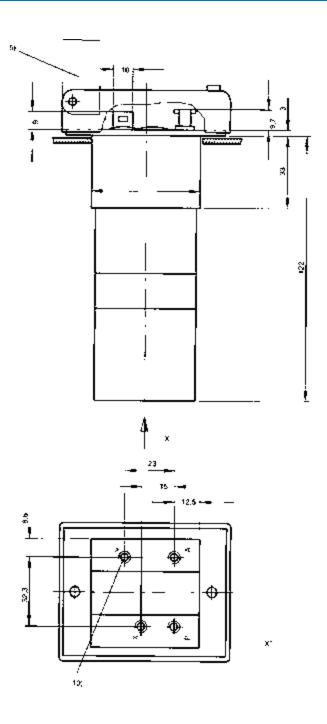
Lorsque la valeur pré-réglée est atteinte, la sortie A est mise sous pression.

La sortie A se referme lors du rappel.

Désignation	Champ d'application conseillé	Raccordement	Poids kg	Référence
temporisateur pneumatique secondes, 3 chiffres	1 s – 16 min	M5 – 4 70.010.120109	0.190	76.600.15111
temporisateur pneumatique minutes, 5 chiffres	16 min – 1667 h	M5 - 4 70.010.120109	0.190	76.600.15113

Cycle de fonctionnement


Signal de temps X

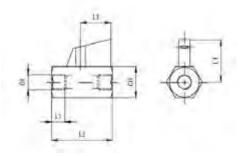

Temporisateur secondes

Temporisateur minutes

215 11

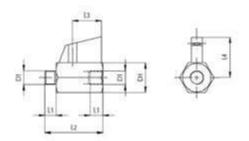
- 2 vis à tête fraisée bombée DIN 966 St M 4 x 16
- 2 rondelles élastiques A 4 DIN 127
- 2 écrous à six pans M 4 DIN 934

- 5) Capot de protection
- 6) Découpe 52 x 52
- 7) Touche de rappel
- 8) Temporisateur sec ou min
- 9) Touche de réglage
- 10) M 5
- X = Signal de temps
- Y = Signal de rappel P = Alimentation en air (pression)
- A = Signal de sortie



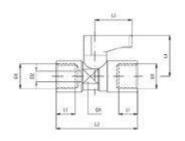
Microvannes

MV 24


Vanne à sphère femelle-femelle

Référence	D1	L1	L2	L3	L4	СН	Poids (g)
70.0MV.240018	G1/8	8	41	20,5	29	21	107
70.0MV.240014	G1/4	10	41	20,5	29	21	97
70.0MV.240038	G3/8	10	41	20,5	29	21	86
70.0MV.240012	G1/2	10,5	46	20,5	31	25	128

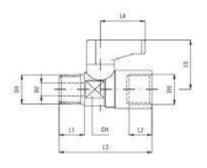
MV 25


Vanne à sphère mâle-femelle

Référence	D1	L1	L2	L3	L4	СН	Poids (g)
70.0MV.250018	G1/8	8	41	20,5	29	21	86
70.0MV.250014	G1/4	10	41	20,5	29	21	82
70.0MV.250038	G3/8	10	41	20,5	29	21	79
70.0MV.250012	G1/2	10,5	46	20,5	31	25	120

MV 53

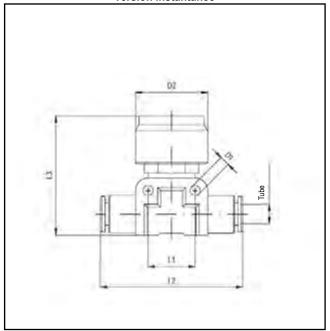
Vanne à sphère femelle-femelle



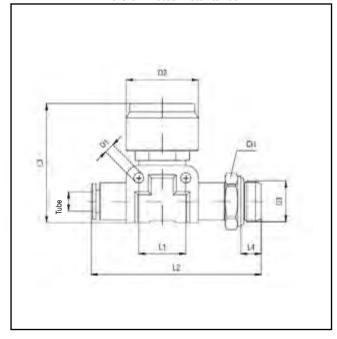
Référence	D1	D2	L1	L2	L3	L4	СН	Poids (g)
70.0MV.530018	G1/8	5,5	8	36,5	19	21,5	14	37
70.0MV.530014	G1/4	5,5	11	43	19	21,5	14	49
70.0MV.530038	G3/8	7	11,5	48	19	22,5	18	
70.0MV.530012	G1/2	10	16	59	25	32	22	

MV 54

Vanne à bille mâle - conique femelle


Référence	D1	D2	D3	L1	L2	L3	L4	L5	СН	Poids (g)
70.0MV.540018	R1/8	5,5	G1/8	8	8	35,5	19	21,5	14	34
70.0MV.540014	R1/4	5,5	G1/4	11	8	40,5	19	21,5	14	43
70.0MV.540038	R3/8	7	G3/8	13	16	48	19	22,5	18	68
70.0MV.540012	R1/2	10	G1/2	17	23	58	25	32	22	

MV 54


Raccord à manomètre

Référence	Ø Tube	D1	D2	D3	L1	L2	L3	L4	СН	Poids (g)
70.0MV.510606	6	3,2	23	-	15	45	38	-	-	15
70.0MV.510618	6	3,2	23	G1/8	15	52	38	5	13	21
70.0MV.510614	6	3,2	23	G1/4	15	54	38	6,5	16	23
70.0MV.510808	8	3,2	23	-	15	46	39,5	-	-	16
70.0MV.510818	8	3,2	23	G1/8	15	53	39,5	5	14	23
70.0MV.510814	8	3,2	23	G1/4	15	55	39,5	6,5	16	25

version instantanée

version filetée instantanée

Vannes à levier basculant

Interrupteur pneumatique en ligne

Tube conseillé: En fonction du raccord monté sur la vanne.

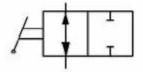
Température de service : - 10°C ÷ 70°C **Pression de service :** max 15 bar

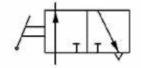
Domaine d'emploi : circuits pneumatiques avec air filtré et lubrifié.

Avec la version à 3 voies on n'achève pas seulement l'interruption du débit,

mais on permet aussi l'échappement en atmosphère de la partie en aval

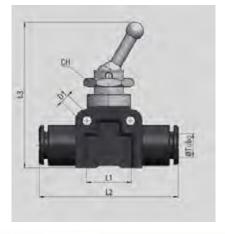
Débit à air 6 bar : Ø400NI/min; Ø8 : 500NI/min


Disponible en deux versions: 2/2 et 3/2 voies.


3 voies

du circuit.

2 voies

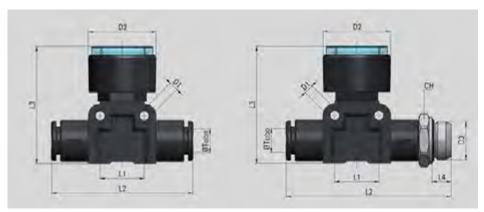

La vanne à 2 voies permet d'interrompre le débit dans un circuit pneumatique par un simple mouvement du levier de la vanne.

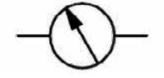
1	Interrupteur pneumatique	Laiton UNI EN 12164 CW614N Nickelé
2	Corps	POM
3	Ressort	Acier Inox AISI 302
4	Joint d'étanchéité	NBR
5	Raccords	Raccords instantanés

Référence	ø ext. Tube	D1	L1	L2	L3	СН	gr
MV48 06 06 -2 vie	6	3,2	15	45	49	15	30
MV48 06 06 -3 vie	6	3,2	15	45	49	15	30
MV48 08 08 -2 vie	8	3,2	15	46	50	15	31,5
MV48 08 08 -3 vie	8	3,2	15	46	50	15	31,5
70.0MV.510818	8	3,2	23	G1/8	15	53	39,5
70.0MV.510814	8	3,2	23	G1/4	15	55	39,5

Manomètre en ligne

Tubes conseillés : PA11, PA12, PA6, Polyurethane PU (98 Shore A).


Température de service : $0^{\circ}\text{C} \div 70^{\circ}\text{C}$ Pression de service : $0 \div 10$ bar


Précision 4

Domaine d'emploi : circuits pneumatiques avec air filtré et lubrifié.

1	Corps	POM
2	Filetage	Laiton UNI EN 12164 CW614N Nickelé
3	Manomètre	ABS
4	Raccords	Raccords instantanés

Référence	ø ext. Tube	D1	D2	D3	L1	L2	L3	L4	СН	gr
MV51 06 06	6	3,2	23	-	15	45	38	-	-	15
MV51 06 18	6	3,2	23	G1/8	15	52	38	5	13	21
MV51 06 14	6	3,2	23	G1/4	15	54	38	6,5	16	23
MV51 08 08	8	3,2	23	-	15	46	39,5	-	-	16
MV51 08 18	8	3,2	23	G1/8	15	53	39,5	5	14	23
MV51 08 14	8	3,2	23	G1/4	15	55	39,5	6,5	16	25

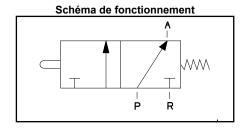
Fin de course pneumatique

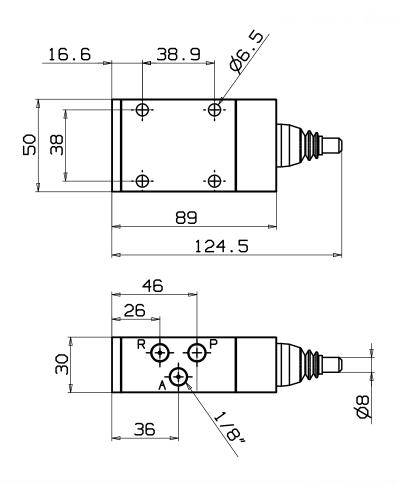
3 voies pour actionneurs

Il est conçu pour couper le flux d'air vers la soupape de basculement et donc pour arrêter la montée lorsque le vérin arrive à la position de fin de course prévue.

L'activation de la bobine est effective soit sous compression soit par une charge radiale complète de $360\,^\circ$.

Ce système est normalement utilisé comme alternative au câble de fin de course relié à la bobine de la soupape de basculement.


Caractéristiques techniques


Pression de travail: 1-8 bar

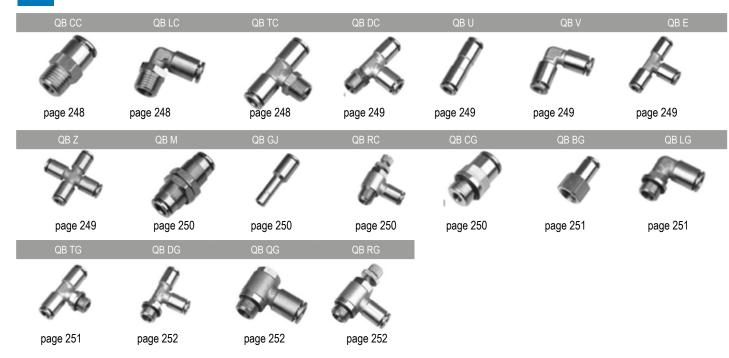
Température de service : 0°C ÷ 80°C Fluides : air comprimé, filtré et lubrifié en continu

Type: 3/2 NC ou NA

Diamètre nominal: 1.5mm

RACCORDS

INDEX - RACCORDS

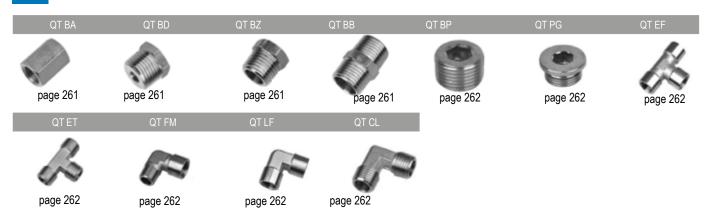

Raccords instantanés technopolymères - Série QF

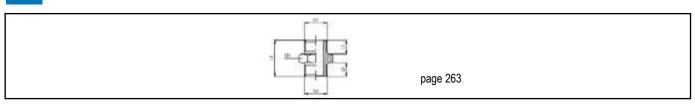
			1 7			
QF CC	QF CG	QF AC	QF BG	QF TG	QF TC	QF DC
	•					
			25	00	AND	100
page 237	page 237	page 237	page 238	page 238	page 238	page 239
page 201	page 201	page 201	page 200	page 200	page 200	page 200
QF DG	QF LC	QF LG	QF RG	QF XG	QF IG	QF NC
	-		100			4
100	191	1 204				
page 220	220	page 240	nago 240	nage 240	nago 240	nago 241
page 239	page 239	page 240	page 240	page 240	page 240	page 241
QF NG	QF WG	QF SG	QF K	QF Y	QF V	QF M
801	100				084	
page 241	page 241	page 241	page 242	page 242	page 242	page 242
QF LM	QF E	QF U	QF Z	QF HG	QF QG	QF P
QF LIVI	QF E	QF U	QF Z	QF NG	QF QG	QFF
AND						
			1	576		
page 243	page 243	page 243	page 243	page 244	page 244	page 244
QF PF	QF YJ	QF GJ	QF OG	QF GG	QF LJ	QF 45
				A		
2	15		2			
page 244	page 245	page 245	page 245	page 245	page 246	page 246
QF FG	QF 2G	QF JG				
	A Company					
	9	5				
page 246	page 246	page 246				

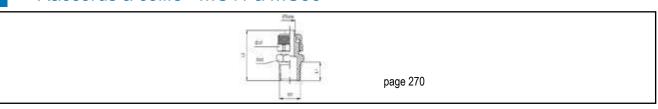
Liste non exhaustive. Pour d'autres demandes, n'hésitez pas à nous consulter.

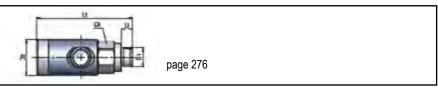
Raccords instantanés métal - Série QB

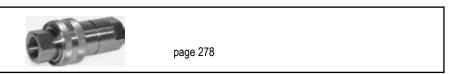
Mini raccords instantanés - Série QM


Raccord de connexion inox - Série QX


Liste non exhaustive. Pour d'autres demandes, n'hésitez pas à nous consulter.


Raccords de connexion - Série QT


Raccords divers - RA11 à RA45


- Connecteurs page 268
- Raccords à coiffe MC11 à MC36

Coupleurs de sécurité - GU42-10 à GU43-22

Coupleurs rapides

Coupleurs rotatifs

page 282

Liste non exhaustive. Pour d'autres demandes, n'hésitez pas à nous consulter.

INDEX - RACCORDS À FONCTION

Limiteurs de débit - Série QR

Raccords fonction - Série QV

QV VG QV F QV S QV SR QV FG QV KG

QV FG QV KG

QV FG QV KG

QV FG QV KG

page 288 page 289 page 289 page 289 page 289 page 289

Connecteurs multi coupleurs

page 290

Fin de course

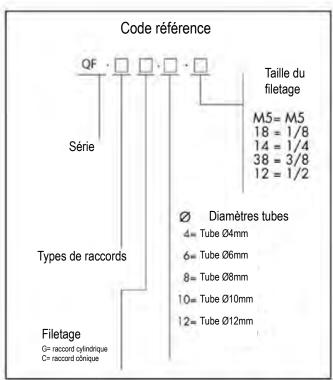
page 294

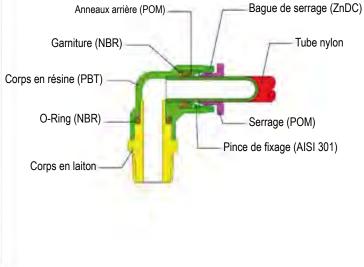
Silencieux - Série QS

QS UG

page 296

Raccords instantanés technopolymères

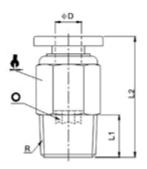

Série QF


Les raccords à emboîtements et les raccords des tuyaux à connexion rapide permettent une facilité d'utilisation.

Ils sont très flexibles même dans les espaces confinés.

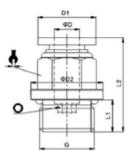
Données techniques

Applications	Air compressé / vide
Fluides	Air (pas d'éléments graisseux ni de liquide)
Pression au travail	0 - 10 bar
Pression maximale	12 bar
Dépression	- 1 bar
Plages de température	- 5 °C + 60° C
Tubes recommandés	Nylon, Polyuréthane, Rilsan

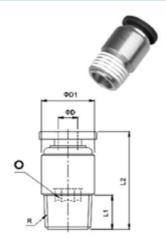


Sur demande

Série QF CC - Cônique

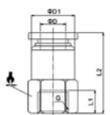


Référence	ØD	R	L1	L2	0	4
70.QFCC.04M5	4	M5	3,5	20,3	2	10
70.QFCC.0418	4	R1/8	7,5	20	3	10
70.QFCC.06M5	6	M5	3,5	21	2	12
70.QFCC.0618	6	R1/8	7,5	20,5	4	12
70.QFCC.0614	6	R1/4	9,5	22,5	4	14
70.QFCC.0618	8	R1/8	7,5	25,5	5	14
70.QFCC.0614	8	R1/4	9,5	24,5	5	14
70.QFCC.0838	8	R3/8	10,5	21,5	6	17
70.QFCC.1014	10	R1/4	9,5	21	6	17
70.QFCC.1038	10	R3/8	10,5	28,5	8	17
70.QFCC.1012	10	R1/2	13,5	26,5	8	21
70.QFCC.1238	12	R3/8	10,5	30	8	21
70.QFCC.1212	12	R1/2	13,5	32,5	8	21


Série QF CG - Cylindrique

Référence	ØD	G	Ø D1	Ø D2	L1	L2	0	4
70.QFCG 04 18	4	G1/8	12	14	5,5	19,5	3	10
70.QFCG 06 18	6	G1/8	14	14	5,5	22	4	12
70.QFCG 06 14	6	G1/4	14	17	7,5	22,5	4	12
70.QFCG 08 18	8	G1/8	16	14	5,5	25	4	14
70.QFCG 08 14	8	G1/4	16	17	7,5	24	5	14
70.QFCG 08 38	8	G3/8	16	20	7,5	20,5	6	14
70.QFCG 10 14	10	G1/4	19,5	17	7,5	30,5	6	17
70.QFCG 10 38	10	G3/8	19,5	20	7,5	27	8	17
70.QCG 10 12	10	G1/2	19,5	24	10	30	8	17
70.QFCG 12 38	12	G3/8	23	20	7,5	28	8	21
70.QFCG 12 12	12	G1/2	23	24	10	30,5	8	21

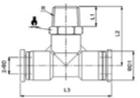
Série QF AC - Conique



Référence	ØD	R	L1	L2	ØD1	0
70.QFAC.04 M5	4	M5	3,5	20,3	10	2
70.QFAC.04 18	4	R1/8	7,5	20	10	3
70.QFAC.06 M5	6	M5	3,5	21	12	2
70.QFAC.06 18	6	R1/8	7,5	20,5	12	4
70.QFAC.06 14	6	R1/4	9,5	22,5	14	4
70.QFAC.08 18	8	R1/8	7,5	25,5	14	5
70.QFAC.04 18	8	R1/4	9,5	24,5	14	5
70.QFAC.08 38	8	R3/8	10,5	21,5	17	6
70.QFAC.10 14	10	R1/4	9,5	31	17	6
70.QFAC.10 38	10	R3/8	10,5	28,5	17	8
70.QFAC.10 12	10	R1/2	13,5	26,5	21	8
70.QFAC.12 38	12	R3/8	10,5	30	21	8
70.QFAC.12 12	12	R1/2	13,5	32,5	21	8

Série QF BG

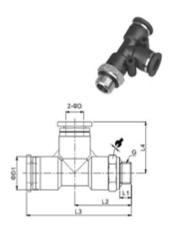
Référence	Ø D	G	L1	L2	Ø D1	4
70.QFBG.04 18	4	G1/8	8,5	24	10	14
70.QFBG.06 18	6	G1/8	8,5	24,5	12	14
70.QFBG.06 14	6	G1/4	11	27	12	17
70.QFBG.08 18	8	G1/8	8,5	26	14	14
70.QFBG.08 14	8	G1/4	11	28,5	14	17
70.QFBG.08 38	8	G3/8	12	29,5	14	21
70.QFBG.10 14	10	G1/4	11	32,7	17	17
70.QFBG.10 38	10	G3/8	12	33	17	21
70.QFBG.10 12	10	G1/2	14	35,7	17	24
70.QFBG.12 38	12	G3/8	12	34,5	20	21
70.QFBG.12 12	12	G1/2	14	36,5	20	24


Série QF TG

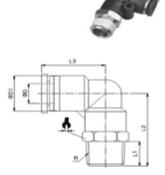
Référence	Ø D	G	L1	L2	L3	Ø D1	d
70.QFTG.04 18	4	G1/8	5,5	25,5	38	11,5	14
70.QFTG.06 18	6	G1/8	5,5	26,5	39	13,5	14
70.QFTG.06 14	6	G1/4	7,5	28,2	39	13,5	17
70.QFTG.08 18	8	G1/8	5,5	29	45	15	14
70.QFTG.08 14	8	G1/4	7,5	31,5	45	15	17
70.QFTG.08 38	8	G3/8	7,5	32	45	15	20
70.QFTG.10 14	10	G1/4	7,5	37	57	19	17
70.QFTG.10 38	10	G3/8	7,5	37	57	19	20
70.QFTG.10 12	10	G1/2	10	40,5	57	19	24
70.QFTG.12 38	12	G3/8	7,5	38,5	59	21,5	21
70.QFTG.12 12	12	G1/2	10	41,5	59	21,5	24

Série QF TC

Référence	Ø D	R	L1	L2	L3	Ø D1	4
70.QFTC.04 M5	4	M5	3,5	22,5	38	11,5	10
70.QFTC.04 18	4	R1/8	7,5	25	38	11,5	10
70.QFTC. 06 M5	6	M5	3,5	23,2	39	13,5	12
70.QFTC.06 18	6	R1/8	7,5	25,7	39	13,5	12
70.QFTC.06 14	6	R1/4	9,5	28,2	39	13,5	14
70.QFTC.08 18	8	R1/8	7,5	29,5	45	15	14
70.QFTC.08 14	8	R1/4	9,5	31,5	45	15	14
70.QFTC.08 38	8	R3/8	10,5	33	45	15	17
70.QFTC.10 14	10	R1/4	9,5	37	57	19	17
70.QFTC.10 38	10	R3/8	10,5	38	57	19	17
70.QFTC.10 12	10	R1/2	13,5	41,8	57	19	21
70.QFTC.12 38	12	R3/8	10,5	39,5	59	21,5	21
70.QFTC.12 12	12	R1/2	13,5	42,5	59	21,5	21



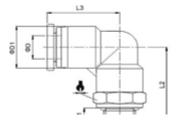
Série QF DC


Référence	ØD	R	L1	L2	L3	L4	Ø D1	4
70.QFDC.04 M5	4	M5	3,5	22,5	41,5	19	11,5	10
70.QFDC.04 18	4	R1/8	7,5	25	44	19	11,5	10
70.QFDC.06 18	6	M5	3,5	23,2	42,4	19,2	13,5	12
70.QFDC.06 18	6	R1/8	7,5	25,7	44,9	19,2	13,5	12
70.QFDC.06 14	6	R1/4	9,5	28,2	47,5	19,2	13,5	14
70.QFDC.08 18	8	R1/8	7,5	29,5	52	22,5	15	14
70.QFDC.08 14	8	R1/4	9,5	31,5	54	22,5	15	14
70.QFDC.08 12	8	R3/8	10,5	33	55,5	22,5	15	17
70.QFDC.10 14	10	R1/4	9,5	37	65,5	27,8	19	17
70.QFDC.10 38	10	R3/8	10,5	38	66,5	27,8	19	17
70.QFDC.10 12	10	R1/2	13,5	41,5	70	27,8	19	21
70.QFDC.12 38	12	R3/8	10,5	39,5	69	29,5	21,5	21
70.QFDC.12 12	12	R1/2	13,5	42,5	72	29,5	21,5	21

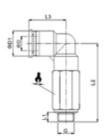
Série QF DG

Référence	ØD	G	L1	L2	L3	L4	Ø D1	4
70.QF DG.04 18	4	G1/8	5,5	25,5	44,5	19	11,5	14
70.QF DG.06 18	6	G1/8	5,5	25,7	44,9	19,2	13,5	14
70.QF DG.06 14	6	G1/4	7,5	28,2	47,5	19,2	13,5	17
70.QF DG.08 18	8	G1/8	5,5	29	51,5	22,5	15	14
70.QF DG.08 14	8	G1/4	7,5	31,5	54	22,5	15	17
70.QF DG.08 38	8	G3/8	7,5	32	54	22,5	15	17
70.QF DG.10 14	10	G1/4	7,5	37	65,5	27,8	19	17
70.QF DG.10 38	10	G3/8	7,5	37	65,5	27,8	19	20
70.QF DG.10 12	10	G1/2	10	40,5	69	27,8	19	24
70.QF DG.12 38	12	G3/8	7,5	38,5	68	29,5	21,5	21
70.QF DG.12 12	12	G1/2	10	41,5	71	29,5	21,5	24

Série QF LC



Référence	Ø D	R	L1	L2	L3	Ø D1	đ
70.QFLC.04 M5	4	M5	3,5	22,5	19	11,5	10
70.QF LC.04 18	4	R1/8	7,5	25	19	11,5	10
70.QFLC.06 M5	6	M5	3,5	23,2	19,2	13,5	12
70.QFLC.06 18	6	R1/8	7,5	25,7	19,2	13,5	12
70.QFLC.06 14	6	R1/4	9,5	28,2	19,2	13,5	14
70.QFLC.08 18	8	R1/8	7,5	29	22,5	15	14
70.QFLC.08 14	8	R1/4	9,5	31	22,5	15	14
70.QFLC.08 38	8	R3/8	10,5	33	22,5	15	17
70.QFLC.10 14	10	R1/4	9,5	36,5	27,8	19	17
70.QFLC.10 38	10	R3/8	10,5	37,5	27,8	19	17
70.QFLC.10 12	10	R1/2	13,5	41	27,8	19	21
70.QFLC.12 38	12	R3/8	10,5	39,5	29,5	21,5	21
70.QFLC.12 12	12	R1/2	13,5	42,5	29,5	21,5	21


Série QF LG

Référence	ØD	G	L1	L2	L3	Ø D1	d
70.QFLG.04 18	4	G1/8	5,5	25,5	19	11,5	14
70.QFLG.06 18	6	G1/8	5,5	25,7	19,2	13,5	14
70.QFLG.06 14	6	G1/4	7,5	28,2	19,2	13,5	17
70.QFLG.08 18	8	G1/8	5,5	29	22,5	15	14
70.QFLG.08 14	8	G1/4	7,5	31,5	22,5	15	17
70.QFLG.08 38	8	G3/8	7,5	32	22,5	15	20
70.QFLG.10 14	10	G1/4	7,5	36,5	27,8	19	17
70.QFLG.10 38	10	G3/8	7,5	36,5	27,8	19	20
70.QFLG.10 12	10	G1/2	10	40	27,8	19	24
70.QFLG.12 38	12	G3/8	7,5	38,5	29,5	21,5	21
70.QFLG.12 12	12	G1/2	10	41,5	29,5	21,5	24

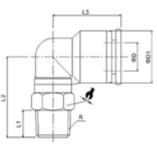
Série QF RG

Référence	ØD	G	L1	L2	L3	Ø D1	4
70.QFRG.04 1	18 4	G1/8	5,5	37,5	19	11,5	14
70.QFRG.06 1	18 6	G1/8	5,5	39,2	19,2	13,5	14
70.QFRG.06 1	14 6	G1/4	7,5	41,7	19,2	13,5	17
70.QFRG.08 1	18 8	G1/8	5,5	44,3	22,5	15	17
70.QFRG.08 1	14 8	G1/4	7,5	46,3	22,5	15	17
70.QFRG.08 3	88 8	G3/8	7,5	48	22,5	15	20
70.QFRG.10 1	14 10	G1/4	7,5	56,5	27,8	19	17
70.QFRG.10 3	38 10	G3/8	7,5	56,5	27,8	19	20
70.QFRG.10 1	12 10	G1/2	10	60	27,8	19	24
70.QF RG.12	38 12	G3/8	7,5	62	29,5	21,5	21
70.QFRG.12 1	12 12	G1/2	10	65	29,5	21,5	24

Série QF XG

Référence	ØD	Ø D1	Ø D2	Ø D3	Ø D4	L	L1	L2
70.QFXG.06 04	6	4	13,3	11,3	3,2	11	36,5	15
70.QFXG.08 08	8	8	14,8	14,8	3,2	15	41	16,5
70.QFXG.08 04	8	4	14,8	11,3	3,2	11	38,5	15
70.QFXG.08 06	8	6	14,8	13,3	3,2	13	40	15,5

Série QF IG

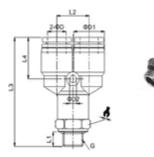


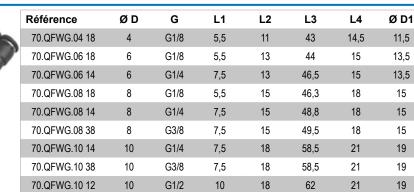
Référence	Ø D	G	L3	Ø D1	Ø D2	L	L1	L2	d
70.QFIG.04 18	4	G1/8	5,5	11,3	3,2	11	43	15	14
70.QFIG.04 14	4	G1/4	7,5	11,3	3,2	11	45,5	15	17
70.QFIG.06 18	6	G1/8	5,5	13,3	3,2	13	46,5	15,5	14
70.QFIG.06 14	6	G1/4	7,5	13,3	3,2	13	49	15,5	17
70.QFIG.06 38	6	G3/8	7,5	13,3	3,2	13	49,5	15,5	20
70.QFIG.08 18	8	G1/8	5,5	14,8	3,2	15	47,5	16,5	14
70.QFIG.08 14	8	G1/4	7,5	14,8	3,2	15	50	16,5	17
70.QFIG.08 38	8	G3/8	7,5	14,8	3,2	15	50,5	16,5	20

Série QF NC



Référence	Ø D	R	L1	L2	L3	Ø D1	4
70.QFNC.04 M5	4	M5	3,5	20	19	11,5	10
70.QFNC.04 18	4	R1/8	7,5	20,5	19	11,5	10
70.QFNC.06 M5	6	M5	3,5	21	19,2	13,5	10
70.QFNC.06 18	6	R1/8	7,5	21,5	19,2	13,5	10
70.QFNC.06 14	6	R1/4	9,5	21	19,2	13,5	14
70.QFNC.08 18	8	R1/8	7,5	22,2	22,2	15	12
70.QFNC.08 14	8	R1/4	9,5	21,7	22,5	15	17
70.QFNC.08 38	8	R3/8	10,5	22,7	22,5	15	17
70.QFNC.10 14	10	R1/4	9,5	28,4	27,8	19	14
70.QFNC.10 38	10	R3/8	10,5	24,7	27,8	19	17
70.QFNC.10 12	10	R1/2	13,5	28,2	27,8	19	21
70.QFNC.12 38	12	R3/8	10,5	26	29,5	21,5	17
70.QFNC.12 12	12	R1/2	13,5	29,5	29,5	21,5	21


Série QF NG

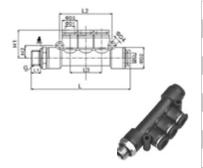


Référence	ØD	G	L1	L2	L3	Ø D1	d
70.QFNG.04 M5	4	G1/8	5,5	22	19	11,5	14
70.QFNG.06 18	6	G1/8	5,5	23	19,2	13,5	14
70.QFNG.06 14	6	G1/4	7,5	20,5	19,2	13,5	17
70.QFNG.08 18	8	G1/8	5,5	23,7	22,5	15	14
70.QFNG.08 14	8	G1/4	7,5	21,2	22,5	15	17
70.QFNG.08 38	8	G3/8	7,5	21,7	22,5	15	20
70.QFNG.10 14	10	G1/4	7,5	28	27,8	19	17
70.QFNG.10 38	10	G3/8	7,5	23,7	27,8	19	20
70.QFNG.10 12	10	G1/2	10	26,2	27,8	19	24
70.QFNG.12 38	12	G3/8	7,5	25	29,5	21,5	21
70.QFNG.12 12	12	G1/2	10	27,5	29,5	21,5	24

Série QF WG

7,5

10


G3/8

G1/2

12

12

Série QF SG

Référence	Ø D	G	Ø D1	Ø D2	Ø D3	Ø D4	H1	H2	L	L1	L2	L3	4
70.QFSG.04 18	4	G1/8	4	14,5	13	3,2	19	9	68	5,5	42	26	14
70.QFSG.04 14	4	G1/4	4	14,5	13	3,2	19	9	70	7,5	42	26	17
70.QFSG.06 14	6	G1/4	6	14,5	13	3,2	20,5	9	70	7,5	42	26	17
70.QFSG.06 38	6	G3/8	6	14,5	13	3,2	20,5	9	70,5	7,5	42	26	20
70.QFSG.08 14	8	G1/4	8	18,4	14,5	3,2	24	11	89	7,5	48	29	17
70.QFSG.08 38	8	G3/8	8	18,4	14,5	3,2	24	11	89,5	7,5	48	29	20
70.QFSG.08 12	8	G1/2	8	18,4	14,5	3,2	24	11	92,5	10	48	29	24
70.QFSG.10 38	10	G3/8	10	18,4	18,4	4,2	27,5	12	98,5	7,5	60,8	37	20
70.QFSG.10 12	10	G1/2	10	18,4	18,4	4,2	27,5	12	102	10	60,8	37	24

21

21

62

65

21,5

21,5

Ø D2

3,2

3,2

3,2

3,2

3,2

4,2

4,2

4,2

4,2

4,2

21,5

21,5

đ

14

14

17

14

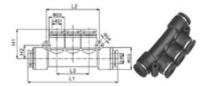
17

17

20

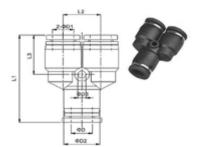
24

21


24

70.QFWG.12 38

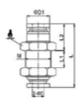
70.QFWG.12 12



Série QF K

Référence	Ø D	Ø D1	Ø D2	Ø D3	Ø D4	L	L2	L3	H1	H2
70.QFK.04 04	4	4	14,5	13	3,2	57	36	22	19	8
70.QFK.06 06	6	6	14,5	13	3,2	58	36	22	19,5	8
70.QFK.06 08	8	8	19	14,5	4,2	84	61	29	24,5	11,5
70.QFK.10 10	10	10	19	14,5	4,2	87	61	29	26	11,5
70.QFK.06 04	6	4	14,5	13	3,2	58	36	22	19	8
70.QFK.08 04	8	4	18,4	14,5	3,2	62	42	26	20,5	9
70.QFK.08 06	8	6	18,4	14,5	3,2	81	48	29	24,5	9
70.QFK.10 06	10	6	19	14,5	4,2	87	61	29	24,5	11,5
70.QFK.10 08	10	8	19	14,5	4,2	87	61	29	24,5	11,5

Série QF Y


Référence	Ø D	Ø D1	Ø D2	Ø D3	L1	L2	L3
70.QFY.04 04	4	4	11,5	3,2	36,5	11	14,5
70.QFY.06 06	6	6	13,5	3,2	37,5	13	15
70.QFY.06 08	8	8	15	3,2	39,8	15	18
70.QFY.10 10	10	10	19	4,2	50	18	21
70.QFY.12 12	12	12	21,5	4,2	53	21	21,5
70.QFY.06 04	6	4	13,5	3,2	37,5	13	15
70.QFY.08 04	8	4	15	3,2	39,8	15	18
70.QFY.08 06	8	6	15	3,2	39,8	15	18
70.QFY.10 06	10	6	19	4,2	39,8	18	21
70.QFY.10 08	10	8	19	4,2	50	18	21
70.QFY.12 08	12	8	21,5	4,2	53	21	21,5
70.QFY.12 10	12	10	21,5	4,2	53	21	21,5

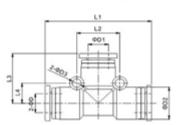
Série QF V

Référence	Ø D	Ø D1	Ø D2	L1	L2
70.QF V.04	4	11,5	3,2	19	7
70.QF V.06	6	13,5	3,2	19,2	8
70.QF V.08	8	15	3,2	22,5	9,5
70.QF V.10	10	19	4,2	27,8	12
70.QF V.12	12	21,5	4,2	29,5	13

Série QF M

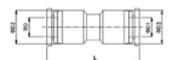


Référence	ØD	Ø D1	M	L	L1	L2	d
70.QFM.04	4	10	M12X1	30,5	9,5	10	14
70.QFM.06	6	12	M14X1	31	7,5	10,6	17
70.QFM.08	8	14	M16X1	34,5	6,5	12	19
70.QFM.10	10	17	M20X1	41,5	11,5	12	24
70.QFM.12	12	20	M22X1	44,5	12,5	13,5	26

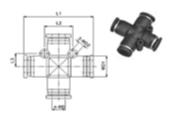

Série QF LM

Référence	ØD	Ø D1	Ø D2	L	L1	L2	M	4
70.QFLM.04	4	11,5	10	19	31	6	M12X1	14
70.QFLM.06	6	13,5	12	19,2	34,5	7	M14X1	17
70.QFLM.08	8	15	14	22,5	41	7,5	M16X1	19
70.QFLM.10	10	19	17	28,5	47	9,5	M20X1	24
70.QFLM.12	12	21,5	20	29,5	49	10	M22X1	26

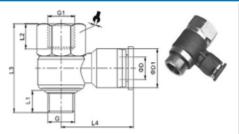
Série QF E



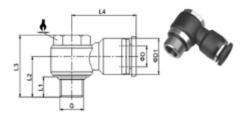
Référence	Ø D	Ø D1	Ø D2	Ø D3	L1	L2	L3	L4
70.QFE.04 04	4	4	11,5	3,2	38	14	19	7
70.QFE.06 06	6	6	13,5	3,2	39	16	19,2	8
70.QFE.08 08	8	8	15	3,2	45	19	22,5	9,5
70.QFE.10 10	10	10	19	4,2	57	24	27,8	12
70.QFE.12 12	12	12	21,5	4,3	59	26	29,5	13
70.QFE.06 04	6	4	13,5	3,2	39	16	19,2	8
70.QFE.08 04	8	4	15	3,2	45	19	22,5	9,5
70.QFE.08 06	8	6	15	3,2	45	19	22,5	9,5
70.QFE.10 06	10	6	19	4,2	57	24	26,3	12
70.QFE.10 08	10	8	19	4,2	57	24	26,8	12
70.QFE.12 08	12	8	21,5	4,3	59	26	28,5	13
70.QFE.12 10	12	10	21,5	4,3	59	26	29,5	13


Série QF U

Référence	ØD	Ø D1	Ø D2	Ø D3	L
70.QFU.04 04	4	4	11,5	11,5	34
70.QFU.06 06	6	6	13,5	13,5	35,5
70.QFU.08 08	8	8	15	15	38,5
70.QFU.10 10	10	10	19	19	48
70.QFU.12 12	12	12	21,5	21,5	49
70.QFU.06 04	6	4	13,5	11,5	34,5
70.QFU.08 04	8	4	15	13,5	36,5
70.QFU.08 06	8	6	15	13,5	36,5
70.QFU.10 06	10	6	19	15	44
70.QFU.10 08	10	8	19	15	44
70.QFU.12 08	12	8	21,5	19	48
70.QFU.12 10	12	10	21,5	19	49


Série QF Z

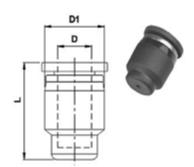
Référence	Ø D	Ø D1	Ø D2	L1	L2	L3
70.QFZ.04	4	11,5	3,2	38	14	7
70.QFZ.06	6	13,5	3,2	39	16	8
70.QFZ.08	8	15	3,2	45	19	9,5
70.QFZ.10	10	19	4,2	57	24	12
70.QFZ.12	12	21,5	4,3	59	26	13



Série QF HG

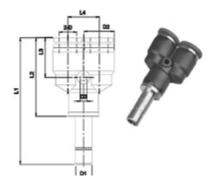
Référence	ØD	G	G1	L1	L2	L3	L4	Ø D1	d
70.QFHG.04 18	4	G1/8	G1/8	5,5	8,5	29	23,5	11,5	14
70.QFHG.06 18	6	G1/8	G1/8	5,5	8,5	29	23,5	13,5	14
70.QFHG.06 14	6	G1/4	G1/4	7,5	11	35	25,4	13,5	17
70.QFHG.08 18	8	G1/8	G1/8	5,5	8,5	29	26,5	15	14
70.QFHG.08 14	8	G1/4	G1/4	7,5	11	35	28,9	15	17
70.QFHG.08 38	8	G3/8	G3/8	7,5	12	41	29,8	15	21
70.QFHG.10 14	10	G1/4	G1/4	7,5	11	36	32,6	19	17
70.QFHG.10 38	10	G3/8	G3/8	7,5	12	41	33	19	21
70.QFHG.10 12	10	G1/2	G1/2	10	14	47,5	36	19	24
70.QFHG.12 38	12	G3/8	G3/8	7,5	12	41	35,5	21,5	21
70.QFHG.12 12	12	G1/2	G1/2	10	14	47,5	36,5	21,5	24

Série QF QG

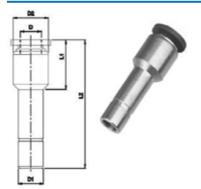

Référence	Ø D	G	L1	L2	L3	L4	Ø D1	d
70.QFQG.04 18	4	G1/8	5,5	14,5	23	23,5	11,5	12
70.QFQG.06 18	6	G1/8	5,5	14,5	23	23,5	13,5	12
70.QFQG.06 14	6	G1/4	7,5	16,7	26,3	25,4	13,5	14
70.QFQG.08 18	8	G1/8	5,5	15,2	23	26,5	15	12
70.QFQG.08 14	8	G1/4	7,5	18	26,3	28,9	15	14
70.QFQG.08 38	8	G3/8	7,5	19	32	29,8	15	19
70.QFQG.10 14	10	G1/4	7,5	20	26,3	32,6	19	14
70.QFQG.10 38	10	G3/8	7,5	21	32	33	19	19
70.QFQG.10 12	10	G1/2	10	24,7	39	36	19	24
70.QFQG.12 38	12	G3/8	7,5	22,2	32	35,5	21,5	19
70.QFQG.12 12	12	G1/2	10	26	39	36,5	21,5	24

Série QF P

Référence	ØD	Ø D1	Ø D2	L1	L2
70.QFP.04	4	5	3	15	28
70.QFP.06	6	7	3	17	33
70.QFP.08	8	9	4	18	37
70.QFP.10	10	11	5	20,5	42
70.QFP.12	12	13	6	23	44

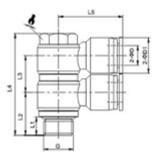

Série QF PF

Référence	ØD	Ø D1	L
70.QFPF.04	4	11,5	17,5
70.QFPF.06	6	13,5	17,7
70.QFPF.08	8	15	21,3
70.QFPF.10	10	19	25
70.QFPF.12	12	21,5	26



Série QF YJ

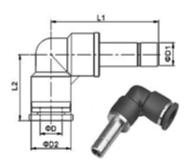
Référence	Ø D	Ø D1	Ø D2	Ø D3	L1	L2	L3	L4
70.QFYJ.04 04	4	4	11,5	3,2	52,5	33,5	14,5	11
70.QFYJ.06 06	6	6	13,5	3,2	53,8	34,8	15	13
70.QFYJ.08 08	8	8	15	3,2	57,8	37,3	18	15
70.QFYJ.10 10	10	10	19	4,2	71	46,5	21	18
70.QFYJ.12 12	12	12	21,5	4,2	75,5	49,5	21,5	21
70.QFYJ.04 06	4	6	11,5	3,2	52,8	33,8	14,5	11
70.QFYJ.06 08	6	8	13,5	3,2	55,5	35	15	13
70.QFYJ.08 10	8	10	15	3,2	62	37,3	18	15
70.QFYJ.10 12	10	12	19	4,2	72,5	46,5	21	18


Série QF GJ

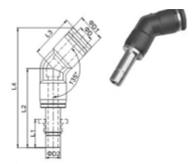
Référence	ØD	Ø D1	Ø D2	L1	L2
70.QF GJ.04 06	4	6	10	16	35
70.QF GJ.04 08	4	8	10	13	34
70.QF GJ.06 08	6	8	12	15,5	36
70.QF GJ.06 10	6	10	12	16,8	41
70.QF GJ.08 10	8	10	14	17,5	42
70.QF GJ.08 12	8	12	14	17,5	42,5
70.QF GJ.10 12	10	12	17	21	46

Série QF OG

Référence	Ø D	G	L1	L2	L3	L4	L5	Ø D1	4
70.QFOG.04 18	4	G1/8	5,5	14	15	38	23,5	11,5	12
70.QFOG.06 18	6	G1/8	5,5	14	15	38	23,5	13,5	12
70.QFOG.06 14	8	G1/4	7,5	17,3	15	41,5	25,4	13,5	14
70.QFOG.08 14	8	G1/4	7,5	18,3	15	41,5	29	15	14
70.QFOG.08 38	8	G3/8	7,5	19	15,7	49,5	30	15	19
70.QFOG.10 14	10	G1/4	7,5	20	21,5	44,8	32,5	19	14
70.QFOG.10 38	10	G3/8	7,5	21	21,5	53	33	19	19
70.QFOG.10 12	10	G1/2	10	25	21,5	60	36	19	24
70.QFOG.12 38	12	G3/8	7,5	22	21,5	53	35,5	21,5	19
70.QFOG.12 12	12	G1/2	10	26	21,5	60,5	36,5	21,5	24

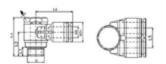

Série QF GG

Référence	ØD	G	L1	L2	L3	L4	L5	L6	Ø D1	A
70.QFGG.04 18	4	G1/8	5,5	14	15	15	53	23,5	11,5	12
70.QFGG.06 18	6	G1/8	5,5	14	15	15	53	23,5	13,5	12
70.QFGG.06 14	6	G1/4	7,5	17	15	15	56,3	25,4	13,5	14
70.QFGG.08 14	8	G1/4	7,5	18	15	15	56,3	29	15	14
70.QFGG.08 38	8	G3/8	7,5	19	15,7	15,7	64,4	30	15	19
70.QFGG.10 14	10	G1/4	7,5	20	21,5	21,5	69,3	32,5	19	14
70.QFGG.10 38	10	G3/8	7,5	21	21,2	21,2	75,4	33	19	19
70.QFGG.10 12	10	G1/2	10	25	21,5	21,5	82	36	19	24
70.QFGG.12 38	12	G3/8	7,5	22	21,2	21,2	75,4	35,5	21,5	19
70.QFGG.12 12	12	G1/2	10	26	21,5	21,5	82	36,5	21,5	24



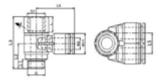
Série QF LJ

Référence	Ø D	Ø D1	Ø D2	L1	L2
70.QFLJ.04 04	4	4	11,5	33,7	19
70.QFLJ.04 06	6	6	13,5	34	19,2
70.QFLJ.08 08	8	8	15	38,5	22,5
70.QFLJ.10 10	10	10	19	46,8	27,8
70.QFLJ.12 12	12	12	21,5	49,5	29,5
70.QFLJ.04 06	4	6	11,5	34	19
70.QFLJ.06 08	6	8	13,5	35,7	19,2
70.QFLJ.08 10	8	10	15	42,5	22,5
70.QFLJ.10 12	10	12	19	48,3	27,8


Série QF 45

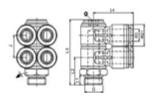
Référence	Ø D	Ø D2	L1	L2	L3	L4	Ø D1
70.QF45.04 04	4	4	12,5	35	19	52	11,3
70.QF45.06 06	6	6	13	35,5	19,2	53,5	13,3
70.QF45.08 08	8	8	14	40,5	22,5	61	14,8
70.QF45.10 10	10	10	18	48,5	27,8	75	18,7
70.QF45.12 12	12	12	19	52	29,5	80	21,3
70.QF45.04 06	4	6	13	35	19	52	11,3
70.QF45.06 08	6	8	14	37	19,2	55	13,3
70.QF45.08 10	8	10	18	44,5	22,5	65	14,8
70.QF45.10 12	10	12	19	50	27,8	76,5	18,7

Série QF FG



Référence	Ø D	G	L1	L2	L3	L4	L5	Ø D1	d
70.QFFG.04 18	4	G1/8	5,5	15,2	25,2	24	13	13	12
70.QFFG.06 18	6	G1/8	5,5	15,2	25,2	24	13	13	12
70.QFFG.08 14	8	G1/4	6,5	17,2	28,2	28,6	14,5	14,5	16

Série QF 2G

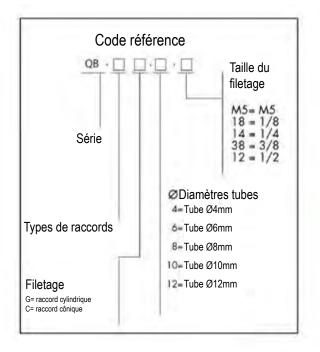


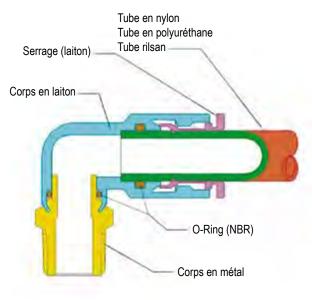
Référence	Ø D	G	G1	L	L1	L2	L3	L4	L5	Ø D1	4
70.QF2G.04 18	4	G1/8	G1/8	8,5	5,5	15	31	24	13	13	13
70.QF2G.06 18	6	G1/8	G1/8	8,5	5,5	15	31	24	13	13	13
70.QF2G.08 14	8	G1/4	G1/4	11	6,5	18	37	29	15	15	16

Série QF JG

Référence	ØD	G	L1	L2	L3	L4	J	Ø D1	4	0
70.QFJG.04 18	4	G1/8	5,5	16,5	40	24	14	13	14	5
70.QFJG.04 14	4	G1/4	6,5	18	41,5	24	14	13	16	5
70.QFJG.06 18	6	G1/8	5,5	16,5	40	24	14	13	14	5
70.QFJG.06 14	6	G1/4	6,5	18	41,5	24	14	13	16	5
70.QFJG.06 38	6	G3/8	7,5	19	42,5	24	14	13	20	5
70.QFJG.08 18	8	G1/8	5,5	18	43,5	28,6	15	14,5	17	6
70.QFJG.08 14	8	G1/4	6,5	18,5	44	28,6	15	14,5	17	6
70.QFJG.08 38	8	G3/8	7,5	19,5	45	28,6	15	14,5	20	6
70.QFJG.08 12	8	G1/2	9	21,5	47	28,6	15	14,5	24	6

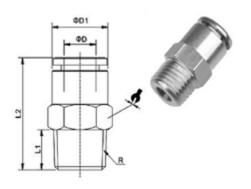
Raccords instantanés métal

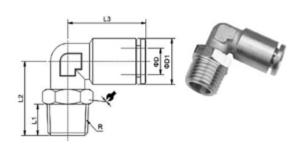

Série QB


Les raccords instantanés de la série QB permettent une connexion très rapide et sécuritaire dans le domaine de l'automatisation pneumatique.

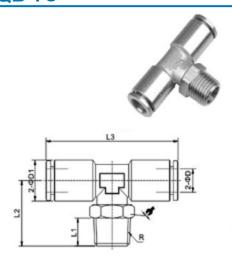
La vaste gamme de Références, de versions et de tailles disponibles rend les raccords QB vraiment flexibles dans toutes les applications de soupapes et cylindres.

Données techniques


Application	Air compressé
Fluide	Air (ni gaz, ni liquide)
Pression	0 - 10 bar
Pression maximale	12 bar
Température	- 20°C + 80° c
Vide	- 1 bar
Tuyaux conseillés	Nylon, polyuréthane, rilsan

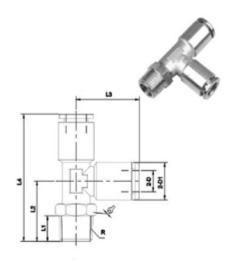


QB CC

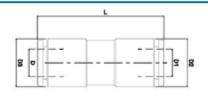

Référence	ØD	R	L1	L2	Ø D1	4
70.QBCC.04M5	4	M5	3,5	20,2	8	8
70.QBCC.0418	4	R1/8	7,5	19	8,5	10
70.QBCC.06M5	6	M5	3,5	24,7	12	12
70.QBCC.0618	6	R1/8	7,5	24,7	12	12
70.QBCC.0614	6	R1/4	9,5	24,5	12	14
70.QBCC.0818	8	R1/8	7,5	28,7	14	14
70.QBCC.0814	8	R1/4	9,5	27,7	14	14
70.QBCC.0838	8	R3/8	10,5	22,7	14	17
70.QBCC.1014	10	R1/4	9,5	33	16	16
70.QBCC.1038	10	R3/8	10,5	27	16	17
70.QBCC.1012	10	R1/2	13,5	26	16	21
70.QBCC.1238	12	R3/8	10,5	31,7	18	19
70.QBCC.1212	12	R1/2	13,5	26,2	18	21

QB LC

Référence	ØD	R	L1	L2	L3	Ø D1	4
70.QBLC.04 M5	4	M5	3,5	16	18,5	8,5	10
70.QBLC.04 18	4	R1/8	7,5	19,5	18,5	8,5	10
70.QBLC.06 M5	6	M5	3,5	16	23,5	12	10
70.QBLC.06 18	6	R1/8	7,5	19,5	23,5	12	10
70.QBLC.06 14	6	R1/4	9,5	21,5	23,5	12	14
70.QBLC.08 18	8	R1/8	7,5	21	25,7	14	12
70.QBLC.08 14	8	R1/4	9,5	23	25,7	14	14
70.QBLC.08 38	8	R3/8	10,5	24,5	25,7	14	17
70.QBLC.10 14	10	R1/4	9,5	24,5	29	16	14
70.QBLC.10 38	10	R3/8	10,5	26	29	16	17
70.QBLC.10 12	10	R1/2	13,5	29	29	16	21
70.QBLC.12 38	12	R3/8	10,5	27	30,7	18	17
70.QBLC.12 12	12	R1/2	13,5	30	30,7	18	21

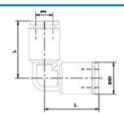

QB TC

Référence	Ø D	R	L1	L2	L3	Ø D1	đ
70.QBTC.04 M5	4	M5	3,5	16	37	8,5	10
70.QBTC.04 18	4	R1/8	7,5	19,5	37	8,5	10
70.QBTC.04 M5	6	M5	3,5	17	44	12	10
70.QBTC.06 18	6	R1/8	7,5	20,5	44	12	10
70.QBTC.06 14	6	R1/4	9,5	22,5	44	12	14
70.QBTC.08 18	8	R1/8	7,5	21,5	50,5	14	12
70.QBTC.08 14	8	R1/4	9,5	23,5	50,5	14	14
70.QBTC.08 38	8	R3/8	10,5	25	50,5	14	17
70.QBTC.10 14	10	R1/4	9,5	25	64	16	14
70.QBTC.10 38	10	R3/8	10,5	26,5	64	16	17
70.QBTC.10 12	10	R1/2	13,5	29,5	64	16	21
70.QBTC.12 38	12	R3/8	10,5	27,5	66,5	18	17
70.QBTC.12 12	12	R1/2	13,5	30,5	66,5	18	21


QB DC

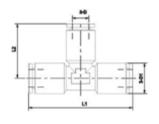
Référence	ØD	R	L1	L2	L3	L4	Ø D1	4
70.QBDC.04 M5	4	M5	3,5	16,5	17,5	34	8,5	10
70.QBDC.04 18	4	R1/8	7,5	20	17,5	37,5	8,5	10
70.QBDC.06 M5	6	M5	3,5	16,5	25	41,5	12	10
70.QBDC.06 18	6	R1/8	7,5	20	25	45	12	10
70.QBDC.06 14	6	R1/4	9,5	22	25	47	12	14
70.QBDC.08 18	8	R1/8	7,5	21,5	27,2	48,7	14	12
70.QBDC.08 14	8	R1/4	9,5	23,5	27,2	50,7	14	14
70.QBDC.08 38	8	R3/8	10,5	25	27,2	52,2	14	17
70.QBDC.10 14	10	R1/4	9,5	25	32	57	16	14
70.QBDC.10 38	10	R3/8	10,5	26,5	32	58,5	16	17
70.QBDC.10 12	10	R1/2	13,5	29,5	32	61,5	16	21
70.QBDC.12 38	12	R3/8	10,5	27,5	33,2	60,7	18	17
70.QBDC.12 12	10	R1/2	13,5	30,5	33,2	63,7	18	21

QB U



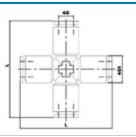
Référence	ØD	ØD1	ØD2	ØD3	L
70.QBU.04 04	4	4	8,5	8,5	30,3
70.QBU.06 06	6	6	12	12	39
70.QBU.08 08	8	8	14	14	41,4
70.QBU.10 10	10	10	16	16	45,3
70.QBU.12 12	12	12	18	18	49
70.QBU.06 04	6	4	8,5	12	35
70.QBU.08 06	8	6	12	14	4,3
70.QBU.10 08	10	8	14	16	43,3
70.QBU.12 10	12	10	16	18	47

QB V



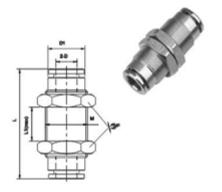
Référence	ØD	ØD1	L
70.QBV.04	4	8,5	18,5
70.QBV.06	6	12	25
70.QBV.08	8	14	27,2
70.QBV.10	10	16	32
70.QBV.12	12	18	33,2

QBE

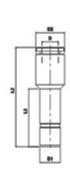


Référence	ØD	ØD1	L1	L2
70.QBE.04	4	8,5	35	17,5
70.QBE.06	6	12	50	25
70.QBE.08	8	14	54,4	27,2
70.QBE.10	10	16	64	32
70.QBE.12	12	18	66,4	33,2

QB Z

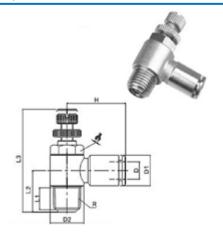


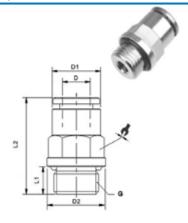
Référence	ØD	ØD1	L
70.QBZ.04	4	8,5	35
70.QBZ.06	6	12	48,5
70.QBZ.08	8	14	54
70.QBZ.10	10	16	58
70.QBZ.12	12	18	63,5



QB M

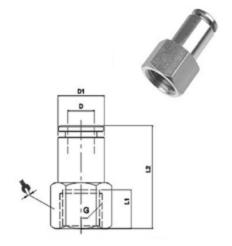
Référence	ØD	ØD1	L	L1 (max)	M	d
70.QBM.04	4	8,5	30,3	8	M10X1	14
70.QBM.06	6	12	39	13	M14X1	17
70.QBM.08	8	14	41,4	14	M16X1	19
70.QBM.10	10	16	45,3	13	M18X1	21
70.QBM.12	12	18	49	18	M20X1	24


QB GJ

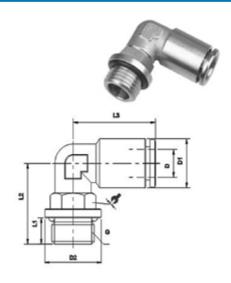

Référence	ØD	ØD1	ØD2	L1	L2
70.QBGJ.04	4	6	9	21	34,5
70.QBGJ.06	6	8	12	22	42
70.QBGJ.08	8	10	14	25,5	46,5
70.QBGJ.10	10	12	16	26	49,5

QB RC

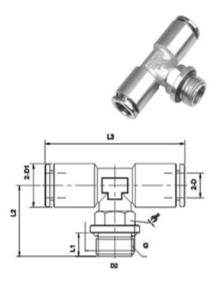
Référence	ØD	R	L1	L2	L3 (max)	ØD1	ØD2	Н	4
70.QBRC.04 18	4	R1/8	6,4	15	43	8,5	13	22	12
70.QBRC.06 18	6	R1/8	6,4	15	43	12	13	26,5	12
70.QBRC.06 14	6	R1/4	9	17	48	12	16,5	27,5	14
70.QBRC.08 18	8	R1/8	6,4	15	43	14	13	27,5	12
70.QBRC.08 14	8	R1/4	9	17	48	14	16,5	30	14
70.QBRC.08 38	8	R3/8	10,5	20	53	14	21	32	19
70.QBRC.10 14	10	R1/4	9	17	48	16	16,5	31	14
70.QBRC.10 38	10	R3/8	10,5	20	53	16	21	35	19
70.QBRC.10 12	10	R1/2	14	26	31	16	27	37	24


QB CG

Référence	ØD	G	L1	L2	ØD1	ØD2	d
70.QBCG.04 18	4	G1/8	5,5	19,4	8,5	14	10
70.QBCG.06 18	6	G1/8	5,5	23,8	12	14	12
70.QBCG.06 14	6	G1/4	7,5	22,5	12	17	12
70.QBCG.08 18	8	G1/8	5,5	28	14	14	14
70.QBCG.08 14	8	G1/4	7,5	27	14	17	14
70.QBCG.08 38	8	G3/8	7,5	22,4	14	20	14
70.QBCG.10 14	10	G1/4	7,5	32	16	17	17
70.QBCG.10 38	10	G3/8	7,5	28	16	20	17
70.QBCG.10 12	10	G1/2	10	24,5	16	24	17
70.QBCG.12 38	12	G3/8	7,5	29,7	18	20	20
70.QBCG.12 12	12	G1/2	10	28	18	24	19

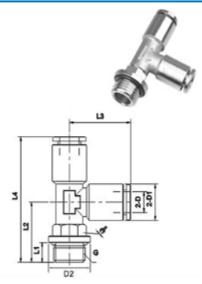


QB BG

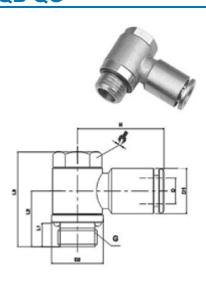

Référence	ØD	G	L1	L2	ØD1	A
70.QBBG.04 18	4	G1/8	8,5	23	8,5	14
70.QBBG.06 18	6	G1/8	8,5	28	12	14
70.QBBG.06 14	6	G1/4	11	30,5	12	17
70.QBBG.08 18	8	G1/8	8,5	29	14	14
70.QBBG.08 14	8	G1/4	11	31,5	14	17
70.QBBG.08 38	8	G3/8	12	32,5	14	21
70.QBBG.10 14	10	G1/4	11	33,5	16	17
70.QBBG.10 38	10	G3/8	12	34,5	16	21
70.QBBG.10 12	10	G1/2	14	36,5	16	24
70.QBBG.12 38	12	G3/8	12	36	18	21
70.QBBG.12 12	12	G1/2	14	38	18	24

QB LG

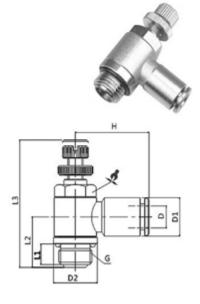
Référence	ØD	G	L1	L2	L3	ØD1	ØD2	d
70.QBLG.04 18	4	G1/8	5,5	18,5	18,5	8,5	14	14
70.QBLG.06 18	6	G1/8	5,5	18,5	23,5	12	14	14
70.QBLG.06 14	6	G1/4	7,5	22,5	23,5	12	17	10
70.QBLG.08 18	8	G1/8	5,5	19,5	25,7	14	14	14
70.QBLG.08 14	8	G1/4	7,5	23,5	25,7	14	17	12
70.QBLG.08 38	8	G3/8	7,5	24	25,7	14	20	12
70.QBLG.10 14	10	G1/4	7,5	25,5	29	16	17	14
70.QBLG.10 38	10	G3/8	7,5	25,5	29	16	20	14
70.QBLG.10 12	10	G1/2	10	28	29	16	24	14
70.QBLG.12 38	12	G3/8	7,5	26,5	30,7	18	20	17
70.QBLG.12 12	12	G1/2	10	29	30,7	18	24	17


QB TG

Référence	ØD	G	L1	L2	L3	ØD1	ØD2	•
Reference	טש	G	LT	LZ	LJ	ועש	שטע	7
70.QBTG.04 18	4	G1/8	5,5	18,5	37	8,5	14	14
70.QBTG.06 18	6	G1/8	5,5	19,5	44	12	14	14
70.QBTG.06 14	6	G1/4	7,5	23,5	44	12	17	10
70.QBTG.08 18	8	G1/8	5,5	20	50,5	14	14	14
70.QBTG.08 14	8	G1/4	7,5	24	50,5	14	17	12
70.QBTG.08 38	8	G3/8	7,5	24,5	50,5	14	20	12
70.QBTG.10 14	10	G1/4	7,5	26	64	16	17	14
70.QBTG.10 38	10	G3/8	7,5	26	64	16	20	14
70.QBTG.10 12	10	G1/2	10	28,5	64	16	24	14
70.QBTG.12 38	12	G3/8	7,5	27	66,5	18	20	17
70.QBTG.12 12	12	G1/2	10	29,5	66,5	18	24	17



QB DG


Référence	ØD	G	L1	L2	L3	ØD1	ØD2	đ
70.QBDG.04 18	4	G1/8	5,5	18,5	18,5	8,5	14	14
70.QBDG.06 18	6	G1/8	5,5	18,5	23,5	12	14	14
70.QBDG.06 14	6	G1/4	7,5	22,5	23,5	12	17	10
70.QBDG.08 18	8	G1/8	5,5	19,5	25,7	14	14	14
70.QBDG.08 14	8	G1/4	7,5	23,5	25,7	14	17	12
70.QBDG.08 38	8	G3/8	7,5	24	25,7	14	20	12
70.QBDG.10 14	10	G1/4	7,5	25,5	29	16	17	14
70.QBDG.10 38	10	G3/8	7,5	25,5	29	16	20	14
70.QBDG.10 12	10	G1/2	10	28	29	16	24	14
70.QBDG.12 38	12	G3/8	7,5	26,5	30,7	18	20	17
70.QBDG.12 12	12	G1/2	10	29	30,7	18	24	17

QB QG

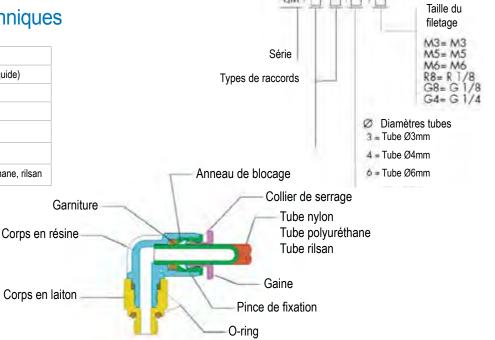
Référence	ØD	G	L1	L2	L3 (max)	ØD1	ØD2	Н	4
70.QBQG.04 M5	4	M5	3,5	12	20,5	9,5	9,5	20	8
70.QBQG.04 18	4	G1/8	5,5	15,5	26,5	9,5	14	22	12
70.QBQG.06 M5	6	M5	3,5	13	20,5	12	9,5	24	8
70.QBQG.06 18	6	G1/8	5,5	15,5	26,5	12	14	27	12
70.QBQG.06 14	6	G1/4	6,5	17,5	30	12	17	28	14
70.QBQG.08 18	8	G1/8	5,5	15,5	26,5	14	14	28	12
70.QBQG.08 14	8	G1/4	6,5	17,5	30	14	17	30	14
70.QBQG.08 38	8	G3/8	7,5	17,5	31	14	21	32	19
70.QBQG.10 14	10	G1/4	6,5	17,5	30	16	17	31	14
70.QBQG.10 38	10	G3/8	7,5	17,5	31	16	21	35	19
70.QBQG.10 12	10	G1/2	10	24,5	39	16	24	37	24

QB RG

Référence	ØD	G	L1	L2	L3 (max)	ØD1	ØD2	Н	4
70.QBRG.04 M5	4	M5	3,5	12	36	9,5	9,5	20	8
70.QBRG.04 18	4	G1/8	5,5	15,5	43	8,5	14	22	12
70.QBRG.06 M5	6	M5	3,5	12	36	12	9,5	24	8
70.QBRG.06 18	6	G1/8	5,5	15,5	43	12	14	27	12
70.QBRG.06 14	6	G1/4	6,5	17	48	12	17	28	14
70.QBRG.08 18	8	G1/8	5,5	15	43	14	14	28	12
70.QBRG.08 14	8	G1/4	6,5	17	48	14	17	30	14
70.QBRG.08 38	8	G3/8	7,5	20	53	14	21	32	19
70.QBRG.10 14	10	G1/4	6,5	17	48	16	17	31	14
70.QBRG.10 38	10	G3/8	7,5	20	53	16	21	35	19
70.QBRG.10 12	10	G1/2	10	26,5	61	16	24	37	24

Mini raccords instantanés

Série QM


Les raccords instantanés de la série QM permettent une connexion très rapide et sécuritaire dans le domaine de l'automatisation pneumatique.

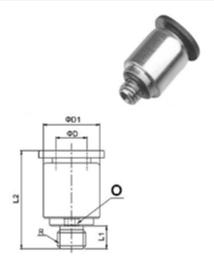
La vaste gamme de Références, de versions et de tailles disponibles rend les raccords QM vraiment flexibles dans toutes les applications de soupapes et cylindres.

Code référence

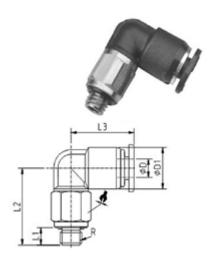
Données techniques

Application	Air compressé
Fluide	Air (ni gaz, ni liquide)
Pression	0 - 10 bar
Pression maximale	12 bar
Température	- 5°C + 60° c
Vide	- 1 bar
Tuyaux conseillés	Nylon, polyuréthane, rilsan

QM CG


Corps en laiton

Référence	ØD	R	L1	L2	0	A
70.QMCG.03 M3	3	M3X0,5	3,5	15		8
70.QMCG.03 M5	3	M5X0,8	3,5	16	2	8
70.QMCG.03 M6	3	M6X1,0	4	16	2	8
70.QMCG.03 R8	3	R1/8	7,5	15	2	10
70.QMCG.03 G8	3	G1/8	5,5	14,6	2	14
70.QMCG.04 M3	4	M3X0,5	3,5	17,5		8
70.QMCG.04 M5	4	M5X0,8	3,5	18,5	2	8
70.QMCG.04 M6	4	M6X1,0	4	19	2	8
70.QMCG.04 R8	4	R1/8	7,5	16	3	10
70.QMCG.04 G8	4	G1/8	5,5	15,2	3	14
70.QMCG.04 G4	4	G1/4	7,5	17,2	3	17
70.QMCG.06 M3	6	M3X0,5	3,5	18		10
70.QMCG.06 M5	6	M5X0,8	3,5	18	2	10
70.QMCG.06 M6	6	M6X1,0	4	18,5	2	10
70.QMCG.06 R8	6	R1/8	7,5	18,5	4	10
70.QMCG.06 G8	6	G1/8	5	17,2	4	13
70.QMCG.06 G4	6	G1/4	7,5	18,5	4	17



QM GG

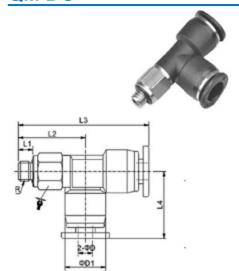
Référence	ØD	R	L1	L2	ØD1	4
70.QM GG.03 M3	3	M3X0,5	3,5	15	6,5	
70.QM GG.03 M5	3	M5X0,8	3,5	16	7	2
70.QM GG.03 M6	3	M6X1,0	4	16	8	2
70.QM GG.03 G8	3	G1/8	5,5	14,6	14	2
70.QM GG.04 M3	4	M3X0,5	3,5	17,5	8	
70.QM GG.04 M5	4	M5X0,8	3,5	18	8	2
70.QM GG.04 M6	4	M6X1,0	4	18,5	9	2
70.QM GG.04 M7	4	M7X1,0	5,5	20	9	3
70.QM GG.04 R8	4	R1/8	7,5	15,5	10	3
70.QM GG.04 G8	4	G1/8	5,5	15,2	14	3
70.QM GG.04 G4	4	G1/4	7,5	17,2	17	3
70.QM GG.06 M3	6	M3X0,5	3,5	18	10	
70.QM GG.06 M5	6	M5X0,8	3,5	18	10	2
70.QM GG.06 M6	6	M6X1,0	4	18,5	10	2
70.QM GG.06 M7	6	M7X1,0	4,5	19,5	10	4
70.QM GG.06 R8	6	R1/8	7,5	18,5	10	4
70.QM GG.06 G8	6	G1/8	5,5	17,6	14	4
70.QM GG.06 G4	6	G1/4	7,5	18,5	17	4

QM LG

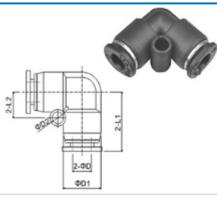
Référence	ØD	R	L1	L2	L3	ØD1	4
70.QM LG.03 M3	3	M3X0,5	3,5	16	12	7,5	8
70.QM LG.06 M5	3	M5X0,8	3,5	16	12	7,5	8
70.QM LG.06 M6	3	M6X1,0	4	16,5	12	7,5	8
70.QM LG.03 R8	3	R1/8	7,5	16,5	12	7,5	10
70.QM LG.03 G8	3	G1/8	5,5	16	12	7,5	14
70.QM LG.04 M3	4	M3X0,5	3,5	17,2	14	9,5	8
70.QM LG.04 M5	4	M5X0,8	3,5	17,2	14	9,5	8
70.QM LG.04 M6	4	M6X1,0	4	17,6	14	9,5	10
70.QM LG.04 R8	4	R1/8	7,5	18	14	9,5	10
70.QM LG.04 G8	4	G1/8	5,5	16,5	14	9,5	13
70.QM LG.04 G4	4	G1/4	7,5	19,5	14	9,5	17
70.QM LG.06 M5	6	M5X0,8	3,5	17,2	16	11,5	8
70.QM LG.06 M6	6	M6X1,0	4	17,6	16	11,5	10
70.QM LG.06 R8	6	R1/8	7,5	18	16	11,5	10
70.QM LG.06 G8	6	G1/8	5,5	16,5	16	11,5	13
70.QM LG.06 G4	6	G1/4	7,5	19,5	16	11,5	17

QM HG

Référence ØD R L1 L2 L3 ØD1 70.QMHG.03M3 3 M3X0,5 3,5 24 12 7,5 70.QMHG.03M5 3 M5X0,8 3,5 24 12 7,5 70.QMHG.03M6 3 M6X1,0 4 24,5 12 7,5 70.QMHG.03R8 3 R1/8 7,5 24,5 12 7,5 70.QMHG.03G8 3 G1/8 5,5 24 12 7,5 70.QMHG.04M3 4 M3X0,5 3,5 29,2 14 9,5 70.QMHG.04M5 4 M5X0,8 3,5 29,2 14 9,5 70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G4 4 G1/8 5,5 28,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 1						
70.QMHG.03M5 3 M5X0,8 3,5 24 12 7,5 70.QMHG.03M6 3 M6X1,0 4 24,5 12 7,5 70.QMHG.03R8 3 R1/8 7,5 24,5 12 7,5 70.QMHG.03G8 3 G1/8 5,5 24 12 7,5 70.QMHG.04M3 4 M3X0,5 3,5 29,2 14 9,5 70.QMHG.04M5 4 M5X0,8 3,5 29,2 14 9,5 70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30	2 L3 ØD1 🦂	L2	L1	R	ØD	Référence
70.QMHG.03M6 3 M6X1,0 4 24,5 12 7,5 70.QMHG.03R8 3 R1/8 7,5 24,5 12 7,5 70.QMHG.03G8 3 G1/8 5,5 24 12 7,5 70.QMHG.04M3 4 M3X0,5 3,5 29,2 14 9,5 70.QMHG.04M5 4 M5X0,8 3,5 29,2 14 9,5 70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30	4 12 7,5 8	24	3,5	M3X0,5	3	70.QMHG.03M3
70.QMHG.03R8 3 R1/8 7,5 24,5 12 7,5 70.QMHG.03G8 3 G1/8 5,5 24 12 7,5 70.QMHG.04M3 4 M3X0,5 3,5 29,2 14 9,5 70.QMHG.04M5 4 M5X0,8 3,5 29,2 14 9,5 70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	4 12 7,5 8	24	3,5	M5X0,8	3	70.QMHG.03M5
70.QMHG.03G8 3 G1/8 5,5 24 12 7,5 70.QMHG.04M3 4 M3X0,5 3,5 29,2 14 9,5 70.QMHG.04M5 4 M5X0,8 3,5 29,2 14 9,5 70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	5 12 7,5 8	24,5	4	M6X1,0	3	70.QMHG.03M6
70.QMHG.04M3 4 M3X0,5 3,5 29,2 14 9,5 70.QMHG.04M5 4 M5X0,8 3,5 29,2 14 9,5 70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	5 12 7,5 10	24,5	7,5	R1/8	3	70.QMHG.03R8
70.QMHG.04M5 4 M5X0,8 3,5 29,2 14 9,5 70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	1 12 7,5 14	24	5,5	G1/8	3	70.QMHG.03G8
70.QMHG.04M6 4 M6X1,0 4 29,6 14 9,5 70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	,2 14 9,5 8	29,2	3,5	M3X0,5	4	70.QMHG.04M3
70.QMHG.04R8 4 R1/8 7,5 30 14 9,5 70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	,2 14 9,5 8	29,2	3,5	M5X0,8	4	70.QMHG.04M5
70.QMHG.04G8 4 G1/8 5,5 28,5 14 9,5 70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	,6 14 9,5 10	29,6	4	M6X1,0	4	70.QMHG.04M6
70.QMHG.04G4 4 G1/4 7,5 31,5 14 9,5 70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5) 14 9,5 10	30	7,5	R1/8	4	70.QMHG.04R8
70.QMHG.06M5 6 M5X0,8 3,5 29,2 16 11,5 70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	5 14 9,5 14	28,5	5,5	G1/8	4	70.QMHG.04G8
70.QMHG.06M6 6 M6X1,0 4 29,6 16 11,5 70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	5 14 9,5 17	31,5	7,5	G1/4	4	70.QMHG.04G4
70.QMHG.06R8 6 R1/8 7,5 30 16 11,5	,2 16 11,5 8	29,2	3,5	M5X0,8	6	70.QMHG.06M5
	,6 16 11,5 10	29,6	4	M6X1,0	6	70.QMHG.06M6
0.W.0.0000 0 0.W0 00- 10 W) 16 11,5 10	30	7,5	R1/8	6	70.QMHG.06R8
70.QMHG.06G8 6 G1/8 5,5 28,5 16 11,5	5 16 11,5 14	28,5	5,5	G1/8	6	70.QMHG.06G8
70.QMHG.06G4 6 G1/4 7,5 31,5 16 11,5	5 16 11,5 17	31,5	7,5	G1/4	6	70.QMHG.06G4


QM BG

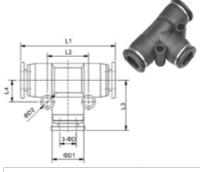
Référence	ØD	R	L1	L2	L3	ØD1	đ
70.QMBG.03 M3	3	M3X0,5	3,5	16	24	7,5	8
70.QM BG.03 M5	3	M5X0,8	3,5	16	24	7,5	8
70.QM BG.03 M6	3	M6X1,0	4	16,5	24	7,5	8
70.QM BG.03 R8	3	R1/8	7,5	16,5	24	7,5	10
70.QM BG.03 G8	3	G1/8	5,5	16	24	7,5	14
70.QM BG.04 M3	4	M3X0,5	3,5	16,2	28	9,5	8
70.QM BG.04 M5	4	M5X0,8	3,5	17,2	28	9,5	8
70.QM BG.04 M6	4	M6X1,0	4	17,6	28	9,5	10
70.QM BG.04 R8	4	R1/8	7,5	18	28	9,5	10
70.QM BG.04 G8	4	G1/8	5,5	16,5	28	9,5	14
70.QM BG.04 G4	4	G1/4	7,5	19,5	28	9,5	17
70.QM BG.06 M5	6	M5X0,8	3,5	18,2	32	11,5	8
70.QM BG.06 M6	6	M6X1,0	4	18,6	32	11,5	10
70.QM BG.06 R8	6	R1/8	7,5	19	32	11,5	10
70.QM BG.06 G8	6	G1/8	5,5	16,5	32	11,5	14
70.QM BG.06 G4	6	G1/4	7,5	19,5	32	11,5	17



QM DG

Référence	ØD	R	L1	L2	L3	L4	ØD1	d
70.QMDG.03M3	3	M3X0,5	3,5	16	28	12	7,5	8
70.QMDG.03M5	3	M5X0,8	3,5	16	28	12	7,5	8
70.QMDG.03M6	3	M6X1,0	4	16,5	28,5	12	7,5	8
70.QMDG.03R8	3	R1/8	7,5	16,5	28,5	12	7,5	10
70.QMDG.03G8	3	G1/8	5,5	16	28	12	7,5	14
70.QMDG.04M3	4	M3X0,5	3,5	16,2	30,2	14	9,5	8
70.QMDG.04M5	4	M5X0,8	3,5	17,2	31,2	14	9,5	8
70.QMDG.04M6	4	M6X1,0	4	17,6	31,6	14	9,5	10
70.QMDG.04R8	4	R1/8	7,5	18	32	14	9,5	10
70.QMDG.04G8	4	G1/8	5,5	16,5	30,5	14	9,5	14
70.QMDG.04G4	4	G1/4	7,5	19,5	33,5	14	9,5	17
70.QMDG.06M5	6	M5X0,8	3,5	18,2	32,7	14,5	11,5	8
70.QMDG.06M6	6	M6X1,0	4	18,6	33,1	14,5	11,5	10
70.QMDG.06R8	6	R1/8	7,5	19	33,5	14,5	11,5	10
70.QMDG.06G8	6	G1/8	5,5	16,5	32,5	16	11,5	14
70.QMDG.06G4	6	G1/4	7,5	19,5	35,5	16	11,5	17

QM V


Référence	ØD	ØD1	ØD2	L1	L2
70.QMV.03	3	7,5	3,2	12	4,8
70.QMV.04	4	9,5	3,2	14,5	6
70.QMV.06	6	11,5	3,2	16	6,5

QM I

Référence	ØD	ØD1	L
70.QMI.03	3	7,5	21
70.QMI.04	4	9,5	26,5
70.QMI.06	6	11,5	27,5

QM E

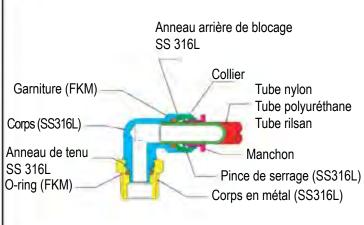
Référence	ØD	ØD1	ØD2	L1	L2	L3	L4
70.QME.03	3	7,5	3,2	23,5	9,6	11,8	4,8
70.QME.04	4	9,5	3,2	29	12	14,5	6
70.QME.06	6	11,5	3,2	32	13	16	6,5

QM Y

Référence	ØD	ØD1	ØD2	L1	L2	L3	L4	
70.QMY.0303	3	3	7,5	3,2	22,7	7,8	9,5	
70.QMY.0404	4	4	9,5	3,2	28	9,2	12	
70.QMY.0606	6	6	11,5	3,2	30	11	12	
70.QMY.0604	6	4	11,5	3,2	30	11	12	

Raccords de connexion inox


Série QX

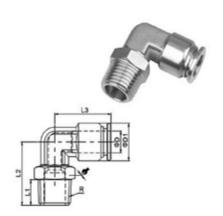

La série en acier inoxydable QX est conçue pour répondre aux environnements agressifs. Le matériau utilisé est l'acier inox SS 316L avec étanchéité en Viton afin d'accorder une haute résistance à la corrosion en offrant la possibilité de l'utiliser jusqu'à 140°C.

Les caractéristiques des raccords de la série QX sont très appréciées dans l'industrie alimentaire ainsi que dans l'industrie chimique .

Données techniques

Application	Air compressé
Fluide	Air / Eau
Pression	0 - 10 bar
Pression maximale	15 bar
Température	- 20°C + 140° c
Vide	- 1 bar
Tuyaux conseillés	Nylon, polyuréthane, rilsan

QX CC

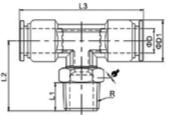

Référence	ØD	R	L1	L2	ØD1	0	4
70.QXCC.0418	4	R1/8	7,5	16,8	10	3	10
70.QXCC.0618	6	R1/8	7,5	19,3	12	4	12
70.QXCC.0614	6	R1/4	9,5	19,8	12	4	14
70.QXCC.0818	8	R1/8	7,5	23,7	14	6	14
70.QXCC.0814	8	R1/4	9,5	22,2	14	6	14
70.QXCC.10 14	10	R1/4	9,5	26,4	17	8	17
70.QX CC.10 38	10	R3/8	10,5	22,9	17	8	17
70.QX CC.10 12	10	R1/2	13,5	26,5	17	8	21
70.QX CC.12 38	12	R3/8	10,5	26,4	23	10	20
70.QX CC.12 12	12	R1/2	13,5	26,4	23	10	21

QX CG

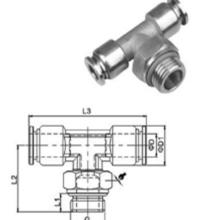
Référence	ØD	R	L1	L2	ØD1	0	d
70.QX CG.04 M5	4	M5	4	19,3	10		10
70.QX CG.04 18		G1/8	5,5	17,3	10	3	13
70.QX CG.06 M5		M5	4	20,6	12		12
70.QX CG.06 18	6	G1/8	5,5	18,8	12	4	13
70.QX CG.06 14		G1/4	6,5	18,8	12	4	16
70.QX CG.08 18		G1/8	5,5	23,2	14	5	14
70.QX CG.08 14	8	G1/4	6,5	20,7	14	6	16
70.QX CG.10 14		G1/4	6,5	26,4	17	8	17
70.QX CG.10 38	10	G3/8	7,5	22,9	17	8	20
70.QX CG.10 12		G1/2	9	25,5	17	8	24
70.QX CG.12 38	12	G3/8	7,5	25,4	20	10	20
70.QX CG.12 12		G1/2	9	25,4	20	10	24

QX LC

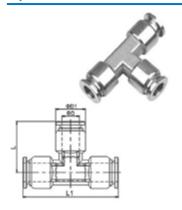
Référence	ØD	R	L1	L2	L3	ØD1	4
70.QX LC.04 18	4	R1/8	7,5	20	18,3	10	10
70.QX LC.06 18	6	R1/8	7,5	23	20,3	12	12
70.QX LC.06 14		R1/4	9,5	23	20,3	12	14
70.QX LC.08 18	8	R1/8	7,5	23,5	22,3	14	12
70.QX LC.08 14		R1/4	9,5	23,5	22,3	14	14
70.QX LC.10 14	10	R1/4	9,5	33	26,4	17	17
70.QX LC.10 38		R3/8	10,5	30	26,4	17	17
70.QX LC.10 12		R1/2	13,5	32	26,4	17	21
70.QX LC.12 38		R3/8	10,5	31,5	29,4	20	17
70.QX LC.12 12		R1/2	13,5	33,5	29,4	20	21


QX LG

Référence	ØD	G	L1	L2	L3	ØD1	A
70.QX LG.04 M5	4	M5	4	17,5	18,3	10	10
70.QX LG.04 18		G1/8	5,5	20	18,3	10	13
70.QX LG.06 M5		M5	4	17,5	20,3	12	10
70.QX LG.06 18	6	G1/8	5,5	22	20,3	12	13
70.QX LG.06 14		G1/4	6,5	23	20,3	12	16
70.QX LG.08 18	8	G1/8	5,5	22,5	22,3	14	13
70.QX LG.08 14		G1/4	6,5	23,5	22,3	14	16
70.QX LG.10 14	10	G1/4	6,5	31	26,4	17	17
70.QX LG.10 38		G3/8	7,5	28,5	26,4	17	20
70.QX LG.10 12		G1/2	9	29	26,4	17	24
70.QX LG.12 38		G3/8	7,5	30	29,4	20	20
70.QX LG.12 12		G1/2	9	30,5	29,4	20	24


QX TC

Référence	ØD	R	L1	L2	L3	ØD1	A
70.QX TC.04 18	4	R1/8	7,5	20	36,6	10	10
70.QX TC.06 18	6	R1/8	7,5	23	40,6	12	12
70.QX TC.06 14		R1/4	9,5	23	40,6	12	14
70.QX TC.08 18	8	R1/8	7,5	23,5	44,6	14	12
70.QX TC.08 14		R1/4	9,5	23,5	44,6	14	14
70.QX TC.10 14		R1/4	9,5	33	52,8	17	17
70.QX TC.10 38	10	R3/8	10,5	30	52,8	17	17
70.QX TC.10 12		R1/2	13,5	32	52,8	17	21
70.QX TC.12 38	12	R3/8	10,5	31,5	58,8	20	17
70.QX TC.12 12		R1/2	13,5	33,5	58,8	20	21

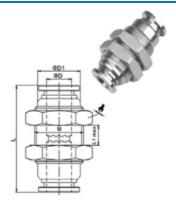

QX TG

Référence	ØD	G	L1	L2	L3	ØD1	4
70.QX TG.04 M5	4	M5	4	17,5	36,6	10	10
70.QX TG.04 18		G1/8	5,5	20	36,6	10	13
70.QX TG.06 M5	6	M5	4	17,5	40,6	12	10
70.QX TG.06 18		G1/8	5,5	22	40,6	12	13
70.QX TG.06 14		G1/4	6,5	23	40,6	12	16
70.QX TG.06 18		G1/8	5,5	22,5	44,6	14	13
70.QX TG.08 14	8	G1/4	6,5	23,5	44,6	14	16
70.QX TG.10 14	10	G1/4	6,5	31	52,8	17	17
70.QX TG.10 38		G3/8	7,5	28,5	52,8	17	20
70.QX TG.10 12		G1/2	9	29	52,8	17	24
70.QX TG.12 38	12	G3/8	7,5	30	58,8	20	20
70.QX TG.12 12		G1/2	9	30,5	58,8	20	24

QX E


Référence	ØD	ØD1	L	L1	
70.QX E.04	4	10	18,3	36,6	
70.QX E.06	6	12	20,3	40,6	
70.QX E.08	8	14	22,3	44,6	
70.QX E.10	10	17	26,4	52,8	
70.QX E.12	12	20	29,4	58,8	

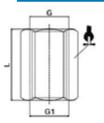
QX V


Référence	ØD	ØD1	L	
70.QX V.04	4	10	18,3	
70.QX V.06	6	12	20,3	
70.QX V.08	8	14	22,3	
70.QX V.10	10	17	26,4	
70.QX V.12	12	20	29,4	

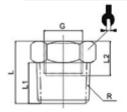
QX U

Référence	ØD	ØD1	L	
70.QX U.04	4	11	27	
70.QX U.06	6	13	29,5	
70.QX U.08	8	15	32,5	
70.QX U.10	10	18	36,8	
70.QX U.12	12	21	39,8	

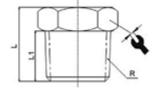
QX M


Référence	ØD	ØD1	L	L1 (max)	М	A
70.QX M.04	4	10	27	8	M12X1	14
70.QX M.06	6	12	29,5	8	M14X1	17
70.QX M.08	8	14	32,5	8,5	M16X1	19
70.QX M.10	10	17	36,8	9,5	M20X1	24
70.QX M.12	12	20	39,8	11,5	M22X1	26

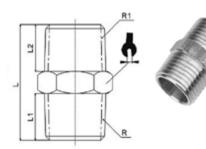
Raccords de connexion Série QT


QT BA

Référence	G	G1	L	A
70.QT BA.18 18	G1/8	G1/8	17	13
70.QT BA.14 14	G1/4	G1/4	23	16
70.QT BA.38 38	G3/8	G3/8	25,5	20
70.QT BA.12 12	G1/2	G1/2	30	24
70.QT BA.14 18	G1/4	G1/8	20	16
70.QT BA.38 17	G3/8	G1/4	23	20


QT BD

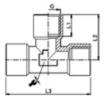
Référence	G	R	L	L1	L2	4	
70.QT BD.18 14	G1/8	R1/4	14,5	9,5	8,5	14	
70.QT BD.18 38	G1/8	R3/8	15,5	10,5	8,5	17	
70.QT BD.18 12	G1/8	R1/2	19	13,5	8,5	21	
70.QT BD.14 38	G1/4	R3/8	15,5	10,5	10	17	
70.QT BD.14 12	G1/4	R1/2	19	13,5	11	21	
70.QT BD.38 12	G3/8	R1/2	19	13,5	12	21	


QT BZ

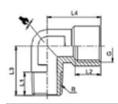
Référence	R	L	L1	4
70.QT BZ.18	R1/8	11	7,5	10
70.QT BZ.14	R1/4	14	9,5	14
70.QT BZ.38	R3/8	15,5	10,5	17
70.QT BZ.12	R1/2	19	13,5	21

QT BB

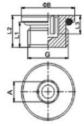
Référence	R	R1	L	L1	L2	4
70.QT BB.18 18	R1/8	R1/8	19,5	7,5	7,5	10
70.QT BB.14 14	R1/4	R1/4	24	9,5	9,5	14
70.QT BB.38 38	R3/8	R3/8	26,5	10,5	10,5	17
70.QT BB.12 12	R1/2	R1/2	33	13,5	13,5	21
70.QT BB.18 14	R1/8	R1/4	22	7,5	9,5	14
70.QT BB.18 38	R1/8	R3/8	23,5	7,5	10,5	17
70.QT BB.14 12	R1/4	R1/2	28	9,5	13,5	21
70.QT BB.38 12	R3/8	R1/2	29	10,5	13,5	21


QT BP

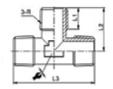
Référence	R	L	Н	Α	
70.QT BP.18	R1/8	8	4,5	5	
70.QT BP.14	R1/4	10	5,5	6	
70.QT BP.38	R3/8	10,5	6	8	
70.QT BP.12	R1/2	13,5	8	10	


QT EF

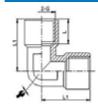
_	_				
Référence	G	L1	L2	L3	4
70.QT EF.18	G1/8	8,5	18	36	12
70.QT EF.14	G1/4	11	23	46	14
70.QT EF.38	G3/8	12	25,5	51	16
70.QT EF.12	G1/2	14	30,5	61	17


QT FM

Référence	R	G	L1	L2	L3	L4	4	
70.QT FM.18	R1/8	G1/8	7,5	8,5	16	19	10	
70.QT FM.14	R1/4	G1/4	9,5	11	21	23	11	
70.QT FM.38	R3/8	G3/8	10,5	12	23	27,5	14	
70.QT FM.12	R1/2	G1/2	13,5	14	28	31	17	

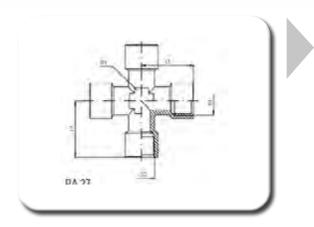

QT PG

Référence	G	L1	L2	L3	Α	ØВ
70.QT PG.18	G1/8	5,5	7,5	4	4	13
70.QT PG.14	G1/4	6,5	8,5	4,5	6	16
70.QT PG.38	G3/8	7,5	10	5,5	8	20
70.QT PG.12	G1/2	9	11,5	6,5	10	24


QT ET

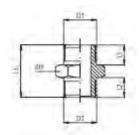
Référence	R	L1	L2	L3	4
70.QT ET.18	R1/8	7,5	15	30	12
70.QT ET.14	R1/4	9,5	19	38	14
70.QT ET.38	R3/8	10,5	22,5	45	16
70.QT ET.12	R1/2	13,5	28,5	57	17

QT LF


Référence	G	L	L1	4
70.QT LF.18	G1/8	8,5	18	9
70.QT LF.14	G1/4	11	23	11
70.QT LF.38	G3/8	12	28,5	13
70.QT LF.12	G1/2	14	30,5	17

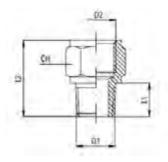
QT CL

Référence	R1	R2	L1	L2	L3	L4	d
70.QT CL.18 18	R1/8	R1/2	7,5	16	7,5	16	7
70.QT CL.18 14	R1/8	R1/4	7,5	17	9,5	19	10
70.QT CL.18 38	R1/8	R3/8	7,5	19	10,5	22,5	12
70.QT CL.14 14	R1/4	R1/4	9,5	20	9,5	20	10
70.QT CL.14 38	R1/4	R3/8	9,5	21	10,5	22,5	12
70.QT CL.14 12	R3/8	R3/8	10,5	23	10,5	25	14
70.QT CL.38 38	R3/8	R3/8	10,5	23	10,5	25	14
70.QT CL.38 12	R3/8	R1/2	10,5	23	13,5	28	14
70.QT CL.12 12	R1/2	R1/2	13,5	28,5	13,5	28,5	17



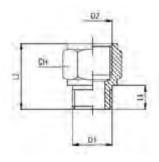
Raccords divers RA 11 à RA 45

RA 11


Mamelon cylindrique

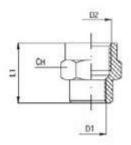
Référence	D1	D2	L1	L2	L3	СН	Poids (g)
70.0RA.11M5M5	M5x0,8	M5x0,8	5	5	13,5	8	2
70.0RA.11M518	M5x0,8	G1/8	5	6	15,5	14	8
70.0RA.1818	G1/8	G1/8	6	6	16,5	14	8
70.0RA.1814	G1/8	G1/4	6	8	19	17	14.5
70.0RA.1838	G1/8	G3/8	6	9	20	19	19
70.0RA.1414	G1/4	G1/4	8	8	21	17	16
70.0RA.1438	G1/4	G3/8	8	9	22	19	21
70.0RA.1412	G1/4	G1/2	8	10	23,5	24	32
70.0RA.3838	G3/8	G3/8	9	9	23	19	22
70.0RA.3812	G3/8	G1/2	9	10	24,5	24	35
70.0RA.1212	G1/2	G1/2	10	10	25,5	24	35

RA 16

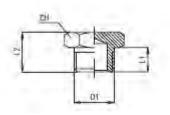

Mamelon conique

Référence	D1	D2	L1	L2	СН	Poids (g)
70.0RA.161818	R1/8	G1/8	8	18	14	13
70.0RA.161814	R1/8	G1/4	8	21,5	17	18
70.0RA.161414	R1/4	G1/4	11	24,5	17	22
70.0RA.161438	R1/4	G3/8	11	25,5	22	42
70.0RA.161412	R1/4	G1/2	11	29	24	40
70.0RA.163838	R3/8	G3/8	11,5	26	22	42
70.0RA.163812	R3/8	G1/2	11,5	29,5	24	40
70.0RA.161212	R1/2	G1/2	14	32	26	57

RA 17

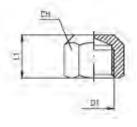

Manchon

Référence	D1	D2	L1	L2	СН	Poids (g)
70.0RA.17.M518	M5x0,8	G1/8	4	14,5	14	7
70.0RA.171818	G1/8	G1/8	6	16	14	13
70.0RA.171814	G1/8	G1/4	6	19,5	17	17
70.0RA.171414	G1/4	G1/4	8	21,5	17	19
70.0RA.171438	G1/4	G3/8	8	22,5	22	32
70.0RA.171412	G1/4	G1/2	8	26	24	37
70.0RA.173838	G3/8	G3/8	9	23,5	22	36
70.0RA.173812	G3/8	G1/2	9	27	24	37
70.0RA.171212	G1/2	G1/2	10	28	26	43


Réduction femelle-mâle cylindrique

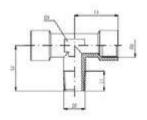
Référence	D1	D2	L1	СН	Poids (g)
70.0RA.18M518	M5x0,8	G1/8	13,5	14	10
70.0RA.181814	G1/8	G1/4	19	17	18
70.0RA.181838	G1/8	G3/8	20	22	36
70.0RA.181438	G1/4	G3/8	22,5	22	41
70.0RA.181412	G1/4	G1/2	26	24	46
70.0RA.183812	G3/8	G1/2	26	24	46

RA 19


Bouchon mâle

Référence	D1	L1	L2	СН	Poids (g)
70.0RA.1900M5	M5x0,8	5	8,5	8	2
70.0RA.190018	G1/8	6	10	14	7.5
70.0RA.190014	G1/4	8	13	17	13.5
70.0RA.190038	G3/8	9	13,5	19	18
70.0RA.190012	G1/2	10	15,5	24	31

RA 20


Bouchon femelle

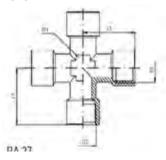
Référence	D1	L1	СН	Poids (g)
70.0RA.200018	G1/8	11,5	14	11
70.0RA.200014	G1/4	15	17	16
70.0RA.200038	G3/8	15,5	20	26
70.0RA.200012	G1/2	20	24	41

RA 24

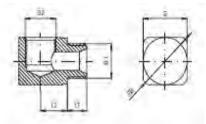
Té femelle-mâle-femelle

Référence	D1	D2	L1	L2	L3	СН	Poids (g)
70.0RA.241818	R1/8	G1/8	8	18,5	21	10	28
70.0RA.241414	R1/4	G1/4	11	23,5	25,5	13	48
70.0RA.243838	R3/8	G3/8	11,5	26	28	17	74
70.0RA.241212	R1/2	G1/2	14	31	33,5	21	122

RA 25

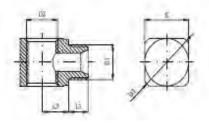

Té mâle-femelle-femelle

Référence	D1	D2	L1	L2	L3		СН	Poids (g)
70.0RA.251818	R1/8	G1/8	8	18,5	21	39,5	10	28
70.0RA.251414	R1/4	G1/4	11	23,5	25,5	49	13	48
70.0RA.253838	R3/8	G3/8	11,5	26	28	54	17	74
70.0RA.251212	R1/2	G1/2	14	31	33,5	64,5	21	127


Croix femelle

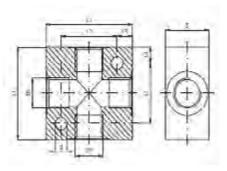
Référence	D1	L1	СН	Poids (g)
70.0RA.261818	G1/8	21	10	41
70.0RA.261414	G1/4	25,5	13	66
70.0RA.263838	G3/8	28	17	112

RA 27


Répartiteur mâle-femelle

Référence	D1	D2	L1	L2	S	Poids (g)
70.0RA.27M5M5	M5x0,8	M5x0,8	5	10	9	6
70.0RA.271818	G1/8	G1/8	6	14	13	14
70.0RA.271414	G1/4	G1/4	8	20	18	40

RA 28

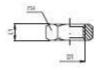

Répartiteur mâle-femelle-femelle

Référence	D1	D2	L1	L2	S	Poids (g)
70.0RA.28M5M5	M5x0,8	M5x0,8	5	5,5	9	5
70.0RA.281818	G1/8	G1/8	6	7,5	13	6
70.0RA.281414	G1/4	G1/4	8	11	18	36

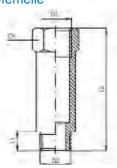
RA 29

Carré de distribution femelle

Référence	D1	D2	L1	L2	L3	S	Poids (g)
70.0RA.2900M5	M5x0,8	3,2	20	14	3	10	9
70.0RA.290018	G1/8	4,5	25	17	4	16	18
70.0RA.290014	G1/4	5,5	40	26	7	20	64
70.0RA.290038	G3/8	5,5	50	34	8	25	125
70.0RA.290012	G1/2	5,5	50	34	8	30	138

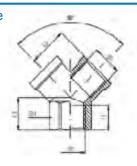

Douille canelée

Référence	D1	D2	L1	L2	L3	СН	Poids (g)
70.0RA.3003M5	3	M5x0,8	5	9	17	8	2
70.0RA.3035M5	3,5	M5x0,8	5	9	17	8	2
70.0RA.3045M5	4,5	M5x0,8	5	9	17	8	2
70.0RA.307518	7,5	G1/8	6	20	30	14	10.5
70.0RA.307514	7,5	G1/4	8	20	33	17	17
70.0RA.308518	8,5	G1/8	6	20	30	14	11.5
70.0RA.309518	9,5	G1/8	6	20	30	14	11
70.0RA.309514	9,5	G1/4	8	20	33	17	18
70.0RA.309538	9,5	G3/8	9	20	34	19	22
70.0RA.3012514	12,5	G1/4	8	22	35	17	21
70.0RA.3012538	12,5	G3/8	9	22	36	19	24
70.0RA.3012512	12,5	G1/2	10	22	38	24	38
70.0RA.3017538	17,5	G3/8	9	24	38	19	38
70.0RA.3017512	17,5	G1/2	10	24	39,5	24	43


RA 31

Ecrou

	Référence	D1	L1	СН	Poids (g)
7	0.0RA.310018	G1/8	4,5	14	4
7	0.0RA.310014	G1/4	5	17	5
7	0.0RA.310038	G3/8	5,5	19	5
7	0.0RA.310012	G1/2	6	24	8
70	0.0RA.3100M10	M10x1	4	14	3
70	0.0RA.3100M12	M12x1	5	16	5
70	0.0RA.3100M14	M14x1	5	18	5,5
70	.0RA.31.00M16	M16x1	5	20	6
70	0.0RA.3100M20	M20x1,5	4	27	10,5

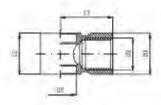

RA 39
Y mâle-femelle

Référence	D1	D2	L1	L2	СН	Poids (g)
70.0RA.391822	G1/8	G1/8	6	22	14	15
70.0RA.391842	G1/8	G1/8	6	42	14	30
70.0RA.391435	G1/4	G1/4	8	35	17	32
70.0RA.391451	G1/4	G1/4	8	51	17	46

RA 40

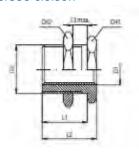
Y femelle

Référence	D1	L1	L2	L3	СН	Poids (g)
70.0RA.400018	G1/8	8	12	14	13	18
70.0RA.400014	G1/4	11	14	17	17	33
70.0RA.400038	G3/8	11,5	16	19	20	44
70.0RA.400012	G1/2	14	19	24,5	25	93


Y mâle-femelle-femelle

Référence	D1	D2	L1	L2	L3	СН	Poids (g)
70.0RA.410018	R1/8	G1/8	8	16	14	13	22
70.0RA.410014	R1/4	G1/4	11	20	17	17	38
70.0RA.410038	R3/8	G3/8	11,5	22	19	20	53
70.0RA.410012	R1/2	G1/2	14	27	24,5	25	108

RA 42

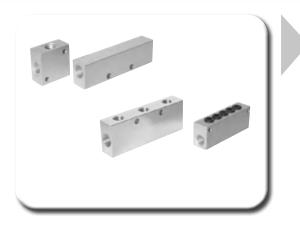

Bague orientable simple

Référence	D1	D2	D3	L1	L2	Poids (g)
70.0RA.4200M5	5,1	M5x0,8	9	11,5	10	7
70.0RA.4200M5/R	7	M5x0,8	9	11,5	10	6
70.0RA.420018	10	G1/8	14	16	15	15
70.0RA.420014	13,2	G1/4	17	22	17	25
70.0RA.42 00 38	17	G3/8	20	26	20	40
70.0RA.420012	21	G1/2	26	32	24	66

RA 44

Traversée cloison

Référence	D1	D2	L1	L2	L3	CH1	CH2	Poids (g)
70.0RA.4400M5	M5x0,5	M10x1	9,5	13	6	14	14	12
70.0RA.440018	G1/8	M16x1,5	15	19	10	19	22	29
70.0RA.440014	G1/4	M20x1,5	19	23	14	24	27	48
70.0RA.440038	G3/8	M26x1,5	22	27	16	30	32	91
70.0RA.440012	G1/2	M28x1,5	28	34	21	32	36	112


RA 45

Bouchon mâle avec 0ring

Référence	D1	D2	L1	L2	СН	Poids (g)
70.0RA.451818	G1/8	R1/8	21	37	10	25
70.0RA.451414	G1/4	R1/4	25,5	47	13	44

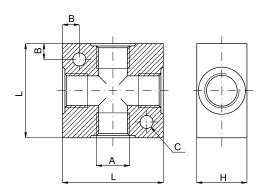
Collecteurs

Série de répartiteurs en aluminium anodisé.

Différentes versions disponibles avec sorties filetées femelle de 1/8" et 1/4".

Connexions instantanées pour tuyau de diamètre extérieur 4, 8 et 10 mm.

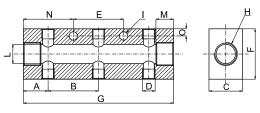
Caractéristiques techniques


Fluide	Air comprimé et autres fluides
Pression	RX, RY, RZ: toujours supérieure à celle employée dans les installations pneumatiques. RR: maxi 12 bars
Température	Voir caractéristiques des tuyaux et raccords pneumatiques employés
Filetages cylindriques	UNI - ISO 228/1 (BSP)
Tube de connexion	Nylon, polyuréthane et Rilsan calibrés
Tolérances, tube	± 0,05 mm
Matériaux	Corps: Aluminium anodisé

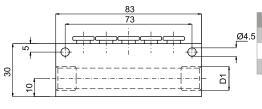
Version	Туре
Avec sorties en croix	RX
Avec sorties sur un côté	RY
Avec sorties sur deux côtés	RZ
Avec sorties sur un côté à connexion rapide	RR

	Connexion standard	
Type	Entrées	Sorties
	1/8"	1/8"
RX	1/4"	1/4"
	3/8"	3/8"
	1/2"	1/2"
DV	1/4"	1/8"
RY	3/8"	1/4"
D7	1/4"	1/8"
RZ	3/8"	1/4"
	1/4"	ø extérieur 4 mm
DD.	1/4"	ø extérieur 6 mm
RR	3/8"	ø extérieur 8 mm
	3/8"	ø extérieur 10 mm

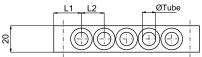
Avec sorties en croix


Article	Α	L	В	С	Н
RX8	1/8"	25	4,3	4,5	16
RX4	1/4"	40	6,5	5,5	20
RX3	3/8"	40	7,5	5,5	25
RX2	1/2"	50	7,5	5,5	30

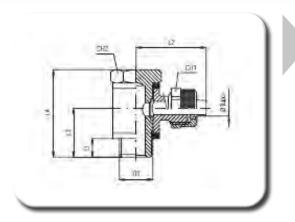
Avec sorties sur un côté


Article	A	В	С	D	E	F	G	Н	1	L	M	N	0	n° trous latéraux
RY1	15	30	20	1/8"	30	30	90	1/4"	5,5	10	9,5	30	5	3
RY2	15	30	20	1/8"	60	30	120	1/4"	5,5	10	9,5	30	5	4
RY3	15	30	20	1/8"	90	30	150	1/4"	5,5	10	9,5	30	5	5
RY4	15	30	20	1/8"	120	30	180	1/4"	5,5	10	9,5	30	5	6
RY5	18	36	20	1/4"	36	30	108	3/8"	6,5	12	10,5	36	6	3
RY6	18	36	20	1/4"	72	30	144	3/8"	6,5	12	10,5	36	6	4
RY7	18	36	20	1/4"	108	30	180	3/8"	6,5	12	10,5	36	6	5
RY8	18	36	20	1/4"	144	30	216	3/8"	6,5	12	10,5	36	6	6
RY9	15	30	20	1/8"	18	30	60	1/4"	6,5	10	9,5	30	6	2

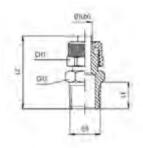
Avec sorties sur 2 côtés



Article	Α	В	С	D	E	F	G	Н		L	M	N	0	n° trous latéraux
RZ1	16	30	20	1/8"	0	30	62	1/4"	6,5	6,5	9,5	31	6	2+2
RZ2	15	30	20	1/8"	30	30	90	1/4"	5,5	5,5	9,5	30	5	3+3
RZ3	15	30	20	1/8"	60	30	120	1/4"	5,5	5,5	9,5	30	5	4+4
RZ4	15	30	20	1/8"	90	30	150	1/4"	5,5	5,5	9,5	30	5	5+5
RZ5	18	36	20	1/4"	28	40	72	3/8"	6,5	6,5	10,5	36	6	2+2
RZ6	18	36	20	1/4"	36	40	108	3/8"	6,5	6,5	10,5	36	6	3+3
RZ7	18	36	20	1/4"	72	40	144	3/8"	6,5	6,5	10,5	36	6	4+4
RZ8	18	36	20	1/4"	108	40	180	3/8"	6,5	6,5	10,5	36	6	5+5


Avec sorties sur un côté à connexion rapide

Article	D1	L1	L2	ø e. tube	n° sorties
RR46	1/4"	14	11	4	6
RR65	1/4"	15,5	13	6	5
RR84	3/8"	17,5	16	8	4



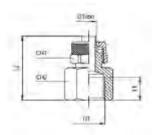
Raccords à coiffe MC 11 à MC 36

MC 11

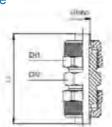

Union simple mâle conique

Référence	Øext Tube	Øint Tube	D1	L1	L2	CH1	CH2	Poids (g)
70.0MC.110418	4	2,5	R1/8	7.5	23.5	7	11	7.4
70.0MC.110518	5	3	R1/8	8	25	8	12	8.6
70.0MC.110618	6	4	R1/8	8	27,5	12	12	15
70.0MC.110614	6	4	R1/4	11	31	12	14	20.6
70.0MC.110638	6	4	R3/8	11,5	31,5	12	17	23.9
70.0MC.110818	8	6	R1/8	8	27,5	14	12	17.7
70.0MC.110814	8	6	R1/4	11	31	14	14	23.3
70.0MC.110838	8	6	R3/8	11,5	31,5	14	17	27.4
70.0MC.111018	10	8	R1/8	8	29,5	16	14	22
70.0MC.111014	10	8	R1/4	11	32,5	16	14	26.6
70.0MC.111038	10	8	R3/8	11,5	33	16	17	33.1
70.0MC.111012	10	8	R1/2	14	36	16	22	48.3
70.0MC.111238	12	10	R3/8	11,5	34,5	18	17	37.3
70.0MC.111212	12	10	R1/2	14	37,5	18	22	49.5
70.0MC.111512	15	12,5	R1/2	14	39,5	22	22	61.9

MC 12

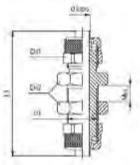

Union simple mâle cylindrique

Référence	Øext. Tube	Øint Tube	D1	L1	L2	CH1	CH2	Poids (g)
70.0MC.1204M5	4	2,5	M5x0,8	5	20	7	7	3.4
70.0MC.120418	4	2,5	G1/8	6	22.5	7	14	9.7
70.0MC.1205M5	5	3	M5x0,8	4	20	8	8	4.8
70.0MC.120518	5	3	G1/8	6	23	8	14	10.6
70.0MC.1206M5	6	4	M5x0,8	4	21	9	8	6.1
70.0MC.120618	6	4	G1/8	6	25.5	12	14	16.4
70.0MC.120614	6	4	G1/4	8	28	12	17	21
70.0MC.120638	6	4	G3/8	9	29	12	19	27.5
70.0MC.120818	8	6	G1/8	6	25.5	14	14	18.8
70.0MC.120814	8	6	G1/4	8	28	14	17	25.2
70.0MC.120838	8	6	G3/8	9	29	14	19	30.1
70.0MC.121018	10	8	G1/8	6	27	16	14	22.9
70.0MC.121014	10	8	G1/4	8	29.5	16	17	29.4
70.0MC.121038	10	8	G3/8	9	30.5	16	19	32.6
70.0MC.121012	10	8	G1/2	10	32	16	24	45.1
70.0MC.121238	12	10	G3/8	9	32	18	19	38.1
70.0MC.121212	12	10	G1/2	10	33.5	18	24	53.2



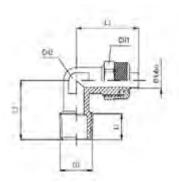
Union simple femelle

Référence	Øe Tube	Øi Tube	D1	L1	L2	CH1	CH2	Poids (g)
70.0MC.130518	5	3	G1/8	8	22.5	8	14	12.4
70.0MC.130618	6	4	G1/8	8	25	12	14	17.8
70.0MC.130614	6	4	G1/4	11	29	12	17	25.8
70.0MC.130818	8	6	G1/8	8	25	14	14	20.1
70.0MC.130814	8	6	G1/4	11	29	14	17	27.5
70.0MC.130838	8	6	G3/8	11.5	29.5	14	20	31.1
70.0MC.131014	10	8	G1/4	11	30.5	16	17	32.2
70.0MC.131038	10	8	G3/8	11.5	31	16	20	36.1
70.0MC.131238	12	10	G3/8	11.5	32.5	18	20	39.7


MC 14 Union double

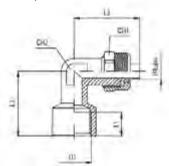
Référence	Øe Tube	Øi Tube	L1	CH1	CH2	Poids (g)
70.0MC.140505	5	3	28,5	8	8	7.5
70.0MC.140606	6	4	34,5	12	12	20.5
70.0MC.140808	8	6	35	14	14	27.9
70.0MC.141010	10	8	38	16	14	36
70.0MC.141212	12	10	41	18	17	47
70.0MC.141515	15	12,5	45,5	22	22	74.6

MC 15

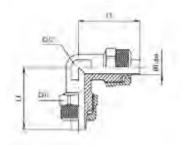

Raccord traversée cloison

Référence	Øe Tube	Øi Tube	D1	L1	L2	CH1	CH2	Poids (g)
70.0MC.150505	5	3	M7x0,75	40	8.5	8	9	10.9
70.0MC.150606	6	4	M10x1	48	10.5	12	14	33.2
70.0MC.150808	8	6	M12x1	48	10.5	14	16	42.6
70.0MC.151010	10	8	M14x1	50	8.5	16	17	56
70.0MC.151212	12	10	M16x1	53	8.5	18	19	75.3
70.0MC.151515	15	12,5	M20x1	58	8.5	22	24	104.6

MC 16

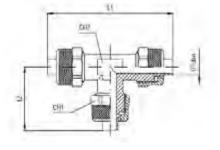

Raccord équerre mâle

Référence	Øe Tube	Øi Tube	D1	L1	L2	L3	CH1	CH2	Poids (g)
70.0MC.1604M5	4	2,5	M5x0,8	5	15,5	20	7	9	10.4
70.0MC.160418	4	2,5	R1/8	7,5	17	20	7	9	10.7
70.0MC.160518	5	3	R1/8	8	17	21,5	8	8	10.8
70.0MC.160618	6	4	R1/8	8	17	22,5	12	8	15.9
70.0MC.160614	6	4	R1/4	11	20	22,5	12	10	21.6
70.0MC.160638	6	4	R3/8	11,5	22,5	23,5	12	11	30.3
70.0MC.160818	8	6	R1/8	8	17	22,5	14	10	19.4
70.0MC.160814	8	6	R1/4	11	20	22,5	14	10	23.3
70.0MC.160838	8	6	R3/8	11,5	22,5	24	14	11	31
70.0MC.161018	10	8	R1/8	8	18,5	25,5	16	11	27.6
70.0MC.161014	10	8	R1/4	11	21,5	25,5	16	11	31.4
70.0MC.161038	10	8	R3/8	11,5	22,5	25,5	16	11	34.7
70.0MC.161238	12	10	R3/8	11,5	24,5	30	18	14	46
70.0MC.161212	12	10	R1/2	14	28	30,5	18	17	66.5
70.0MC.161512	15	12,5	R1/2	14	28	34	22	17	69.6


Raccord équerre femelle

Référence	Øe Tube	Øi Tube	D1	L1	L2	L3	CH1	CH2	Poids (g)
70.0MC.170518	5	3	G1/8	8	19	21.5	8	10	20.8
70.0MC.170618	6	4	G1/8	8	19	22.5	12	10	20.5
70.0MC.170614	6	4	G1/4	10.5	23	25	12	11	30.6
70.0MC.170818	8	6	G1/8	8	19	22.5	14	10	27.7
70.0MC.170814	8	6	G1/4	10.5	23	25	14	11	31
70.0MC.171014	10	8	G1/4	11	23.5	26	16	13	39.2
70.0MC.171238	12	10	G3/8	11.5	28	30.5	18	17	67.6

MC 18


Raccord équerre

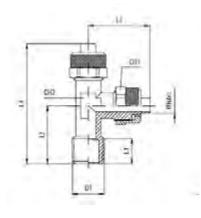
Référence	Øe Tube	Øi Tube	L1	CH1	CH2	Poids (g)
70.0MC.180505	5	3	21,5	8	8	13.1
70.0MC.180606	6	4	21,5	12	8	22.7
70.0MC.180808	8	6	22,5	14	10	31.1
70.0MC.181010	10	8	25,5	16	11	38.6
70.0MC.181212	12	10	30	18	14	58
70.0MC.181515	15	12,5	34	22	17	84.3

MC 19

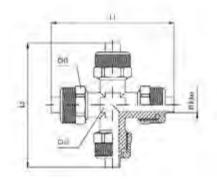
Té égal

Référence	Øe Tube	Øi Tube	L1	L2	CH1	CH2	Poids (g)
70.0MC.190505	5	3	43	21.5	8	8	18.6
70.0MC.190606	6	4	45	22.5	12	8	32.1
70.0MC.190808	8	6	45	22.5	14	10	41.3
70.0MC.191010	10	8	51	25.5	16	11	54.5
70.0MC.191212	12	10	60	30	18	14	84.9
70.0MC.191515	15	12,5	68	34	22	17	124.2

MC 20

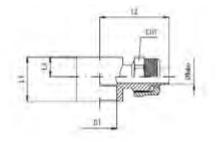

Raccord Té central

Référence	Øe Tube	Øi Tube	D1	L1	L2	L3	CH1	CH2	Poids (g)
70.0MC.200518	5	3	R1/8	8	17	43	8	8	17.5
70.0MC.200618	6	4	R1/8	8	17	45	12	8	27.1
70.0MC.200614	6	4	R1/4	11	20.5	45.5	12	10	35.2
70.0MC.200818	8	6	R1/8	8	17.5	45.5	14	10	33.6
70.0MC.200814	8	6	R1/4	11	20.5	45.5	14	10	37.7
70.0MC.201014	10	8	R1/4	11	21.5	51	16	11	48
70.0MC.201038	10	8	R3/8	11.5	22.5	51	16	11	51.1
70.0MC.201238	12	10	R3/8	11.5	24.5	60	18	14	69.5
70.0MC.201212	12	10	R1/2	14	28	61	18	17	99.4
70.0MC.201512	15	12,5	R1/2	14	28	68	22	17	108.3


Raccord Té latéral

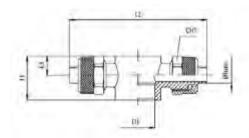
Référence	Øe Tube	Øi Tube	D1	L1	L2	L3	L4	CH1	CH2	Poids (g)
70.0MC.210518	5	3	R1/8	8	17	21.5	38.5	8	8	17.7
70.0MC.210618	6	4	R1/8	8	17	22.5	39.5	12	8	25.8
70.0MC.210614	6	4	R1/4	11	20	22.5	42.5	12	10	33.8
70.0MC.210818	8	6	R1/8	8	17.5	22.5	40.5	14	10	36.9
70.0MC.210814	8	6	R1/4	11	20.5	22.5	43.5	14	10	36.3
70.0MC.211014	10	8	R1/4	11	21	25.5	46.5	16	11	47.4
70.0MC.211038	10	8	R3/8	11.5	22.5	25.5	48	16	11	51.2
70.0MC.211238	12	10	R3/8	11.5	24.5	30	54.5	18	14	72.2
70.0MC.211212	12	10	R1/2	14	28	30.5	58.5	18	17	99.1
70.0MC.211512	15	12,5	R1/2	14	28	34	62	22	17	107.1

MC 22


Raccord à croix

Référence	Øe Tube	Øi Tube	L1	L2	CH1	CH2	Poids (g)
70.0MC.220505	5	3	43	43	8	8	0
70.0MC.220606	6	4	45	45	12	8	45.6
70.0MC.220808	8	6	45	45	14	10	53.1
70.0MC.221010	10	8	51	51	16	11	72.3

MC 23


Bague orientable simple

Référence	Øe Tube	Øi Tube	D1	L1	L2	L3	CH1	Poids (g)
70.0MC.2304M5	4	2,5	5,1	9	16	4.5	7	6.6
70.0MC.230418	4	2,5	10	15	21.5	6	7	12.7
70.0MC.2305M5	5	3	5,1	9	19	4,5	8	7.3
70.0MC.230518	5	3	10	15	25	6	12	20.5
70.0MC.2305M5/R	5	3	7H7	10	19	4	8	6.5
70.0MC.2306M5	6	4	5,1	9	19	4	9	7.9
70.0MC.230618	6	4	10	15	25	6	12	18.5
70.0MC.230614	6	4	13,2	17	26,5	7,5	12	25.6
70.0MC.2306M5/R	6	4	7H7	10	19	4,5	9	6.8
70.0MC.230818	8	6	10	15	25	6	14	21.5
70.0MC.230814	8	6	13,2	17	27,5	7,5	14	27.4
70.0MC.230838	8	6	17	20	29,5	7,5	14	39
70.0MC.231014	10	8	13,2	17	28,5	7,5	16	29.2
70.0MC.231038	10	8	17	20	30,5	7,5	16	41.5

Bague orientable double

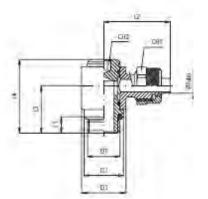
Référence	Øe- Tube	Øi- Tube	D1	L1	L2	L3	CH1	Poids(g)
70.0MC.2405M5	5	3	5,1	9	34	4.5	8	12
70.0MC.240518	5	3	10	15	50	6	12	30.6
70.0MC.2406M5	6	4	5,1	9	34	4.5	9	12.7
70.0MC.240618	6	4	10	15	50	6	12	30.1
70.0MC.240614	6	4	13,2	17	53	7.5	12	35.5
70.0MC.240818	8	6	10	15	50	6	14	31.9
70.0MC.240814	8	6	13,2	17	55	7.5	14	38.9
70.0MC.240838	8	6	17	20	59	7.5	14	51.4
70.0MC.241014	10	8	13,2	17	57	7.5	16	44.5
70.0MC.241038	10	8	17	20	61	7.5	16	56.1

MC 27

Ecrou

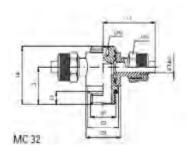
Référence	ØeTube	ØiTube	D1	L1	CH1	Poids(g)
70.0MC.270407	4	2,5	M6x0,75	8	7	1.1
70.0MC.270508	5	3	M7x0,75	8,5	8	1.2
70.0MC.270608	6	4	M8x0,75	9	9	1.5
70.0MC.270610	6	4	M10x1	10,5	12	4.1
70.0MC.270812	8	6	M12x1	10,5	14	5
70.0MC.271014	10	8	M14x1	11,5	16	6.5
70.0MC.271216	12	10	M16x1	13	18	8.8
70.0MC.271520	15	12,5	M20x1	15,5	22	14.3

MC 29


Union simple tournante conique

Référence	Øe- Tube	Øi- Tube	D1	L1	L2	CH1	CH2	СНЗ	Poids(g)
70.0MC.290618	6	4	R1/8	7.5	31	12	11	11	16.3
70.0MC.290614	6	4	R1/4	11	34.5	12	14	14	27.2
70.0MC.290818	8	6	R1/8	7.5	32	14	12	11	20.4
70.0MC.290814	8	6	R1/4	11	35.5	14	14	14	28.7
70.0MC.291014	10	8	R1/4	11	38.5	16	14	14	32.1
70.0MC.291038	10	8	R3/8	11.5	39	16	14	17	43.2

MC 30


Equerre tournante

Référence	Øe- Tube	Øi- Tube	D1	D2	D3	L1	L2	L3	L4	CH1	CH2	Poids (g)
70.0MC.300618	6	4	G1/8	14	14	5	25	16,5	25,5	12	4	28.2
70.0MC.300614	6	4	G1/4	16	18	6,5	26,5	19	29	12	5	41.9
70.0MC.300818	8	6	G1/8	14	14	5	25	16,5	25,5	14	4	28.7
70.0MC.300814	8	6	G1/4	16	18	6,5	27,5	19	29	14	5	44.1
70.0MC.301014	10	8	G1/4	16	18	6,5	28,5	19	29	16	5	46.7
70.0MC.301038	10	8	G3/8	21	18	7	30,5	23,5	32,5	16	8	68.7


Té tournant

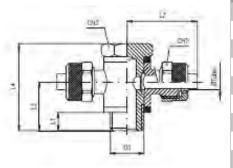
Référence	Øe- Tube	Øi- Tube	D1	D2	D3	L1	L2	L3	L4	CH1	CH2	Poids (g)
70.0MC.310618	6	4	G1/8	14	14	5	25	16,5	25,5	12	4	39.2
70.0MC.310614	6	4	G1/4	16	18	6,5	26,5	19	29	12	5	52.9
70.0MC.310818	8	6	G1/8	14	14	5	25	16,5	25,5	14	4	41.2
70.0MC.310814	8	6	G1/4	16	18	6,5	27,5	19	29	14	5	56
70.0MC.311014	10	8	G1/4	16	18	6,5	28,5	19	29	16	5	64
70.0MC.311038	10	8	G3/8	21	22	7	30,5	23,5	32,5	16	8	84.6

MC 32

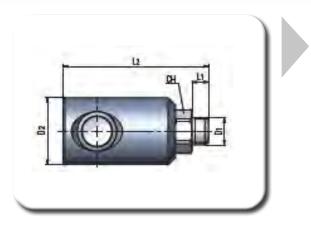
Ecrou avec ressort de protection

Référence	ØeTube	ØiTube	D1	L1	L2	CH1	Poids(g)
70.0MC.320604	6	4	M10x1	17	90	12	13.3
70.0MC.320806	8	6	M12x1	18	99	14	17.1
70.0MC.321008	10	8	M14x1	21	112	16	30.4

MC 34

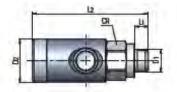

Equerre tournante

Référence	Øe- Tube	Øi- Tube	D1	L1	L2	L3	L4	CH1	CH2	Poids(g)
70.0MC.3404M5	4	2,5	M5x0,8	4	16	9.5	19	7	8	9.4
70.0MC.340418	4	2,5	G1/8	6	21.5	16.5	27	7	14	27.5
70.0MC.3405M5	5	3	M5x0,8	4	19	9.5	19	8	8	10
70.0MC.340518	5	3	G1/8	6	25	16.5	27	8	14	27
70.0MC.3406M5	6	4	M5x0,8	4	19	9.5	19	9	8	10.8
70.0MC.340618	6	4	G1/8	6	25	16.5	27	12	14	32.5
70.0MC.340614	6	4	G1/4	8	26.5	19.5	31.5	12	17	52.4
70.0MC.340818	8	6	G1/8	6	25	16.5	27	14	14	33.6
70.0MC.340814	8	6	G1/4	8	27.5	19.5	31.5	14	17	54.6
70.0MC.340838	8	6	G3/8	9	29.5	23.5	36	14	20	83.4
70.0MC.341014	10	8	G1/4	8	28.5	19.5	31.5	16	17	56.7
70.0MC.341038	10	8	G3/8	9	30.5	23.5	36	16	20	86.2


MC 36

Raccord Té tournant

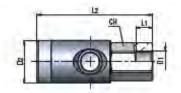
Référence	Øe- Tube	Øi- Tube	D1	L1	L2	L3	L4	CH1	CH2	Poids (g)
70.0MC.3605M5	5	3	M5x0,8	4	17	9.5	19	8	8	14.3
70.0MC.360518	5	3	G1/8	6	25	16.5	27	8	14	44.5
70.0MC.3606M5	6	4	M5x0,8	4	17	9.5	19	9	8	15.3
70.0MC.360618	6	4	G1/8	6	25	16.5	27	12	14	44.1
70.0MC.360614	6	4	G1/4	8	26.5	19.5	31.5	12	17	63.2
70.0MC.360818	8	6	G1/8	6	25	16.5	27	14	14	46.3
70.0MC.360814	8	6	G1/4	8	27.5	19.5	31.5	14	17	66.5
70.0MC.360838	8	6	G3/8	9	29.5	23.5	36	14	20	96.2
70.0MC.361014	10	8	G1/4	8	28.5	19.5	31.5	16	17	72.4
70.0MC.361038	10	8	G3/8	9	30.5	23.5	36	16	20	103.3



Coupleurs de sécurité GU42-10 à GU43-22

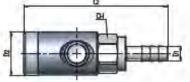
D'autres modèles disponibles. Contacter l'agence

GU 42-10


Coupleur mâle

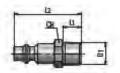
Référence	D1	D2	L1	L2	СН	Poids(g)
70.0GU.42-100014	G1/4	25	8	69	20	105
70.0GU.42-100038	G3/8	25	9	70	20	108
70.0GU.42-100012	G1/2	25	10	70	24	134

GU 42-12


Coupleur femelle

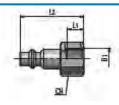
Référence	D1	D2	L1	L2	СН	Poids(g)
70.0GU.42-120014	G1/4	25	10	69,5	20	118
70.0GU.42-120038	G3/8	25	11	73	20	116,5
70.0GU.42-120012	G1/2	25	11	73,5	24	139

GU 42-13


Coupleur avec douille cannelée

Référence	Øi- Tube	D1	D2	L2	СН	Poids (g)
70.0GU.42-130600	6	7	25	86	20	106,2
70.0GU.42-130800	8	9	25	86	20	108
70.0GU.42-131000	10	11	25	86	20	109,7

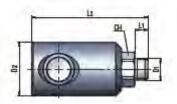
GU 42-20


Embout mâle ISO 6150 B-12

Référence	D1	L1	L2	СН	Poids(g)
70.0GU.42-200014	R1/4	11	40	14	20
70.0GU.42-200038	R3/8	11,5	41,5	17	26
70.0GU.42-200012	R1/2	14	44	22	40

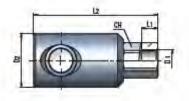
GU 42-21

Embout femelle ISO 6150 B-12



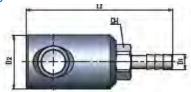
Référence	D1	L1	L2	СН	Poids(g)
70.0GU.42-210014	G1/4	10	38	17	25
70.0GU.42-210038	G3/8	11	40	20	31,5
70.0GU.42-210012	G1/2	11	42	24	43,5

GU 43-10


Coupleur mâle

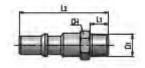
Référence	D1	D2	L1	L2	СН	Poids(g)
70.0GU.43-100014	G1/4	32	8	70	19	145,8
70.0GU.43-100038	G3/8	32	9	71	20	154,7
70.0GU.43-100012	G1/2	32	10	73,5	24	179,8

GU 43-12


Coupleur femelle

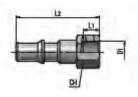
Référence	D1	D2	L1	L2	СН	Poids(g)
70.0GU.43-120014	G1/4	32	10	75	19	162,4
70.0GU.43-120038	G3/8	32	11	76,5	20	162,6
70.0GU.43-120012	G1/2	32	11	78	24	181,4

GU 43-13


Coupleur avec douille cannelée

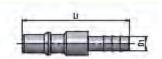
Référence	Øi- Tube	D1	D2	L2	СН	Poids (g)
70.0GU.43-130800	8	9	32	88	19	148,3
70.0GU.43-131000	10	11	32	88	19	149,8
70.0GU.43-131300	13	14	32	88	19	154,9

GU 43-20


Embout mâle ISO 6150 C-14

Référence	D1	L1	L2	СН	Poids(g)
70.0GU.43-200014	R1/4	11	53,5	15	32
70.0GU.43-200038	R3/8	11,5	54	17	35,5
70.0GU.43-200012	R1/2	14	56,5	22	51

GU 43-21


Embout femelle ISO 6150 C-14

Référence	D1	L1	L2	СН	Poids(g)
70.0GU.43-210014	G1/4	10	50,5	17	35
70.0GU.43-210038	G3/8	11	52,5	20	42
70.0GU.43-210012	G1/2	11	54,5	24	53

GU 43-22

Embout ISO 6150 C-14 avec douille cannelée

Référence	Øi- Tube	D1	L1	Poids(g)
70.0GU.43-130800	8	9	88	148,3
70.0GU.43-131000	10	11	88	149,8
70.0GU.43-131300	13	14	88	154,9

Coupleurs rapides INOX

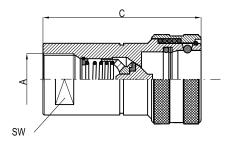
Série GXA (DN6 à DN25)

Série de coupleur rapide en acier INOX AISI 316 à double

Selon norme ISO 7241-1 "A", indiqués pour l'emploi dans des environnements agressifs notamment les secteurs chimique et alimentaire.

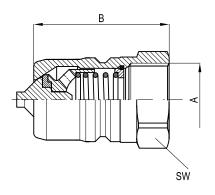
La tenue de la connexion du coupleur est garantie par un système à billes. Permet une bonne tenue dans le temps, même quand les connexions et déconnexions sont fréquentes.

Sur demande, disponibles selon Directive 94/9/CE - ATEX (€ ⟨Ex⟩ II 3 GDc T5

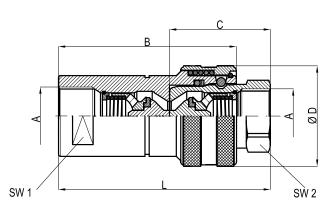

Caractéristiques techniques

Fluide	Air comprimé, gaz, acides, fluides			
Pression d'utilisation	1/4" = 300 bar ; 3/8"-1/2"-3/4" = 250 bar ; 1" = 200 bar			
Température	-20 °C ÷ +150 °C			
Filetages cylindriques	UNI - ISO 228			
Matériaux	Corps et parties intérieures en acier INOX AISI 316			
wateriaux	Joints: FKM			

Version	Code	Référence
Embout 1/4" F, DN 6	570836	GXA1014F
Coupleur 1/4" F, DN 6	570837	GXA2014F
Embout 3/8" F, DN 9	570838	GXA1038F
Coupleur 3/8", DN 9	570839	GXA2038F
Embout 1/2" F, DN 13	570840	GXA1012F
Coupleur 1/2" F, DN 13	570841	GXA2012F
Embout 3/4" F, DN 19	570842	GXA1034F
Coupleur 3/4" F, DN 19	570843	GXA2034F
Embout 1" F, DN 25	570844	GXA1100F
Coupleur 1" F, DN 25	570845	GXA2100F



Embout GXA 1


Code	Référence	Α	С	SW
570836	GXA1014F	1/4"	-	-
570838	GXA1038F	3/8"	-	-
570840	GXA1012F	1/2"	-	-
570842	GXA1034F	3/4"	-	-
570844	GXA1100F	1"	-	-

Coupleur GXA 2

Code	Référence	Α	В	SW
570837	GXA2014F	1/4"	-	-
570839	GXA2038F	3/8"	-	-
570841	GXA2012F	1/2"	-	-
570843	GXA2034F	3/4"	-	-
570845	GXA2100F	1"	-	-

Combinaison embout - coupleur

Α	В	С	D	L	SW1	SW2
1/4"	50	34	26	70	19	19
3/8"	57	40	30	80	22	22
1/2"	70	46	38	95	27	27
3/4"	81	53,5	48	108	34	32
1"	96	63	54	126	38	41

Coupleurs rapides INOX

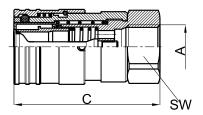
Série GXF (DN6 à DN30)

Série de coupleurs rapideq en acier INOX AISI 316, à "face plate" avec double obturation sans pertes au moment de la

Selon norme ISO 16028, indiquées pour l'emploi dans des environnements agressifs, notamment les secteurs chimique et alimentaire ou dans les applications dans lesquelles il est fondamental qu'il n'y ait pas de déversement du fluide.

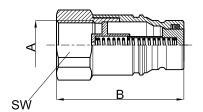
La tenue de la connexion du coupleur est garantie par un système à billes qui permet une bonne tenue dans le temps, même quand les connexions et déconnexions sont fréquentes.

Sur demande, disponibles selon Directive 94/9/CE - ATEX $(\in \langle \mathbb{E}_{\times} \rangle)$ II 3 GDc T5

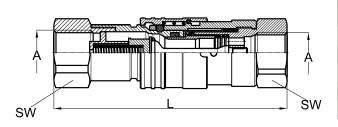

Caractéristiques techniques

Fluide	Air comprimé, gaz, acides, fluides				
Pression d'utilisation	1/4" = 300 bar ; 3/8"-1/2" = 250 bar ; 3/4" = 200 bar ; 1" = 150 bar ; 11/4" = 100 bar				
Température	-20 °C ÷ +150 °C				
Filetages cylindriques	UNI - ISO 228				
Matériaux	Corps et parties intérieures en acier INOX AISI 316				
Widterlaux	Joints: FKM				

Version	Code	Référence
Embout 1/4" F, DN 6	570846	GXF1014F
Coupleur 1/4" F, DN 6	570847	GXF2014F
Embout 3/8" F, DN 9	570848	GXF1038F
Coupleur 3/8", DN 9	570849	GXF2038F
Embout 1/2" F, DN 13	570850	GXF1012F
Coupleur 1/2" F, DN 13	570851	GXF2012F
Embout 3/4" F, DN 19	570852	GXF1034F
Coupleur 3/4" F, DN 19	570853	GXF2034F
Embout 1" F, DN 25	570854	GXF1100F
Coupleur 1" F, DN 25	570855	GXF2100F
Embout 1-1/2" F, DN 30	570856	GXF1114F
Coupleur 1-1/2" F, DN 30	570857	GXF2114F



Embout GXF 1


Code	Référence	Α	С	SW
570846	GXF1014F	1/4"	48	22
570848	GXF1038F	3/8"	68	27
570850	GXF1012F	1/2"	74	32
570852	GXF1034F	3/4"	79	36
570854	GXF1100F	1"	93	45
570856	GXF1114F	1 1/4"	106	55

Coupleur GXF 2

Code	Référence	Α	В	sw
570847	GXF2014F	1/4"	48	22
570849	GXF2038F	3/8"	67	27
570851	GXF2012F	1/2"	68	32
570853	GXF2034F	3/4"	70	36
570855	GXF2100F	1"	82	45
570857	GXF2114F	1 1/4"	90	55

Combinaison jonction- coupleur

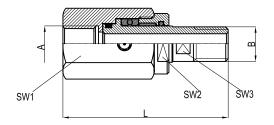
Α	L	sw
1/4"	86	22
3/8"	118	27
1/2"	125	32
3/4"	130	36
1"	153	45
1 1/4"	172,5	55

Coupleurs rotatifs en ligne et à 90°

Série GGLX – GGAX (DN 6 à DN 50)

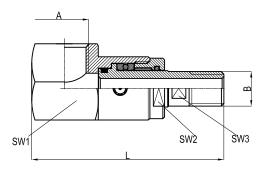
Série de Raccords tournants en ligne et à 90° en acier INOX. Utilisées dans la connexion de deux éléments en rotation l'un par rapport à l'autre en évitant des torsions.

Sur demande, disponibles selon Directive 94/9/CE - ATEX (€ ⟨Ex⟩ II 3 GDc T5

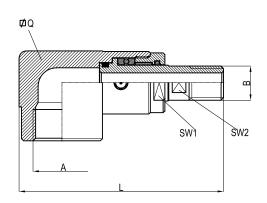

Caractéristiques techniques

Fluide	Air comprimé, gaz, acides, fluides							
Pression	GGLX: 1/4"- 3/8" = 300 bar 1/2" = 300 bar 3/4"-1" = 250 bar 1 1/4" = 180 bar 1 1/2"-2" = 150 bar							
d'utilisation	GGAX: 1/4" = 350 bar 3/8-1/2" = 300 bar 3/4"-1" = 250 bar 1 1/4" = 180 bar 1 1/2"-2" = 150 bar							
Température	-20 °C ÷ +150 °C							
Filetage cylindrique	UNI - ISO 228							
Vitesse max. de rotation	10 tours/minute							
Matériaux	Corps et parties intérieurs en acier INOX AISI 316							
Wateriaux	Joints : FKM							

Version	Code	Référence
En ligne 1/4" MF, DN 6	570858	GGLX014
En ligne 3/8" MF, DN 9	570859	GGLX038
En ligne 1/2" MF, DN 13	570860	GGLX012
En ligne 3/4" MF, DN 19	570861	GGLX034
En ligne 1" MF, DN 25	570862	GGLX100
En ligne 1 1/4" MF, DN 30	570863	GGLX114
En ligne 1 1/2" MF, DN 40	570864	GGLX112
En ligne 2" MF, DN 50	570865	GGLX200
À 90° 1/4" MF, DN 6	570866	GGAX014
À 90° 3/8" MF, DN 9	570867	GGAX038
À 90° 1/2" MF, DN 13	570868	GGAX012
À 90° 3/4" MF, DN 19	570869	GGAX034
À 90° 1" MF, DN 25	570870	GGAX100
À 90° 1 1/4" MF, DN 30	570871	GGAX114
À 90° 1 1/2" MF, DN 40	570872	GGAX112
À 90° 2" MF, DN 50	570873	GGAX200



Raccords tournants en ligne GGLX


Code	Référence	Α	В	L	SW1	SW2	SW3
570858	GGLX014	1/4"	1/4"	75	27	24	11
570859	GGLX038	3/8"	3/8"	88	34	30	14
570860	GGLX012	1/2"	1/2"	101	36	32	18
570861	GGLX034	3/4"	3/4"	110	46	40	24
570862	GGLX100	1"	1"	124	55	50	30
570863	GGLX114	1 1/4"	1 1/4"	129	60	55	38
570864	GGLX112	1 1/2"	1 1/2"	138	75	69	41
570865	GGLX200	2"	2"	149	85	80	55

Raccords tournants à 90° GGAX 1/4" - 1"

Code	Référence	Α	В	L	SW1	SW2	SW3
570866	GGAX014	1/4"	1/4"	78	32	21	11
570867	GGAX038	3/8"	3/8"	98	36	27	14
570868	GGAX012	1/2"	1/2"	106	46	32	18
570869	GGAX034	3/4"	3/4"	118	50	37	24
570870	GGAX100	1"	1"	142	60	46	30
570863	GGLX114	1 1/4"	1 1/4"	129	60	55	38
570864	GGLX112	1 1/2"	1 1/2"	138	75	69	41
570865	GGLX200	2"	2"	149	85	80	55

Raccords tournants à 90° GGAX 1 1/4" - 2"

Code	Référence	Α	В	L	Q	SW1	SW2
570871	GGAX114	1 1/4"	1 1/4"	155	60	55	38
570872	GGAX112	1 1/2"	1 1/2"	170	75	70	41
570873	GGAX200	2"	2"	190	85	80	55

Limiteurs de débit

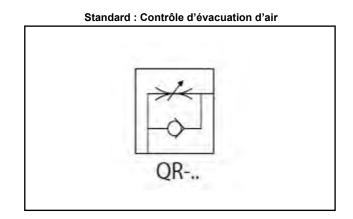
Série QR

Ces vannes sont utilisées dans le contrôle et la régulation de la circulation de l'air dans un circuit pneumatique.

A appliquer sur les bouches d'air d'entrée / échappement d'un vérin pneumatique pour régler la vitesse.

La série QR Vesta est optimale utilisée à haut degré et reste précise dans l'ajustement.

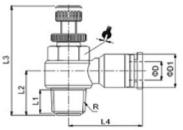
Etudiée pour tourner à 360° autour du raccord.


Caractéristiques techniques

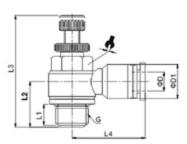
Fluide	Air seulement
Pression au travail	0 - 10 bar
Pression maximale	12 bar
Plages de température	-5° C + 60° C
Tubes recommandés	Nylon, Polyuréthane, Rilsan

Mesure de la régulation des flux

Bi directionnel

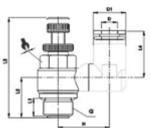

Sur demande : Contrôle d'entrée d'air

Série QR CC



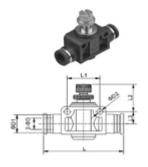
Référence	Ø D	R	L1	L2	L3	L4	Ø D1	4
70.QRCC.04M5	4	M5	3,2	12	32	20,5	11,5	8
70.QRCC.0418	4	R1/8	6,4	14	42	23,5	11,5	12
70.QRCC.06M5	6	M5	3,2	12	32	22	13,5	8
70.QRCC.0618	6	R1/8	6,4	14	42	23,5	13,5	12
70.QRCC.0614	6	R1/4	10	18	48	25,4	13,5	14
70.QRCC.0818	8	R1/8	6,4	14,5	42	26,5	15	12
70.QRCC.0814	8	R1/4	10	19	48	28,9	15	14
70.QRCC.0838	8	R3/8	11,4	20,5	53	29,8	15	19
70.QRCC.1014	10	R1/4	10	20	48	32,6	19	14
70.QRCC.1038	10	R3/8	11,4	22,5	53	33	19	19
70.QRCC.1012	10	R1/2	14	25,5	61	36	19	24
70.QRCC.1238	12	R3/8	11,4	24	53	35,5	21,5	19
70.QRCC.1212	12	R1/2	14	30	61	36,5	21,5	24

Série QR CG

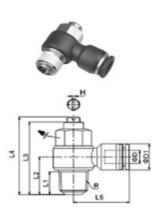


Référence	Ø D	G	L1	L2	L3	L4	Ø D1	4
70.QRCG.0418	4	G1/8	5,5	14	42	23,5	11,5	12
70.QRCG.0618	6	G1/8	5,5	14	42	23,5	13,5	12
70.QRCG.0614	6	G1/4	7,5	18	48	25,4	13,5	14
70.QRCG.0818	8	G1/8	5,5	14,5	42	26,5	15	12
70.QRCG.0814	8	G1/4	7,5	19	48	28,9	15	14
70.QRCG.0838	8	G3/8	7,5	20,5	53	29,8	15	19
70.QRCG.1014	10	G1/4	7,5	20	48	32,6	19	14
70.QRCG.1038	10	G3/8	7,5	22,5	53	33	19	19
70.QRCG.1012	10	G1/2	10	25,5	61	36	19	24
70.QRCG.1238	12	G3/8	7,5	24	53	35,5	21,5	19
70.QRCG.1212	12	G1/2	10	30	61	36,5	21,5	24

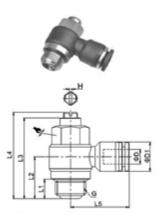
Série QR SG



Référence	ØD	G	L1	L2	L3	L4	Н	Ø D1	4
70.QRSG.0418	4	G1/8	5,5	14	42	26,5	18	15	12
70.QRSG.0618	6	G1/8	5,5	14	42	26,5	18	15	12
70.QRSG.0614	6	G1/4	7,5	17,5	48	27	20,5	15	14
70.QRSG.0818	8	G1/8	5,5	14	42	26,5	18	15	12
70.QRSG.0814	8	G1/4	7,5	17,5	48	27	20,5	15	14
70.QRSG.1014	10	G1/4	7,5	17,5	48	30	22	21,5	14
70.QRSG.1038	10	G3/8	7,5	21,5	53	31	23	21,5	19
70.QRSG.1214	12	G1/4	7,5	17,5	48	30	22	21,5	14
70.QRSG.1238	12	G3/8	7,5	21,5	53	31	23	21,5	19

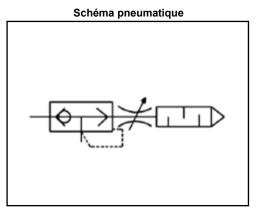


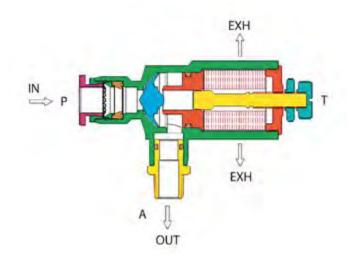
Série QR U

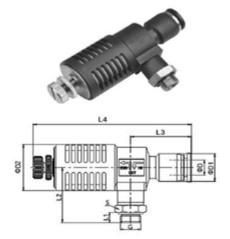

Référence	Ø D	Ø D1	L	L2	L3	Ø D2	L1
70.QRU.04	4	10,5	40,5	16	6,5	3,2	14
70.QRU.06	6	12,5	48,7	25,5	8,5	4,3	20
70.QRU.08	8	14	54,4	25	9,5	4,3	22
70.QRU.10	10	18	64,3	29,5	10,5	4,3	26
70.QRU.12	12	20,6	74,6	27,5	13	4,3	32

Série QR LC

Référence	ØD	R	L1	L2	L3	L4	L5	Ø D1	Н	4
70.QRLC.04M5	4	M5	3,2	10,5	23	23,5	20,3	11,3	0,5	8
70.QRLC.0418	4	R1/8	7	15	29	32	23	11,3	0,8	12
70.QRLC.06M5	6	M5	3,2	11,5	23	23,5	21,8	13,3	0,5	8
70.QRLC.0618	6	R1/8	7	15	29	32	23	13,3	0,8	12
70.QRLC.0614	6	R1/4	11	18,5	34,8	37,5	25	13,3	1,2	14
70.QRLC.0818	8	R1/8	7	15,8	29	32	25,8	15	0,8	12
70.QRLC.0814	8	R1/4	11	19,5	34,8	37,5	28,9	15	1,2	14
70.QRLC.0838	8	R3/8	12,5	21,3	40,8	43,5	29,8	15	1,2	19
70.QRLC.1014	10	R1/4	11	21,2	34,8	37,5	32,7	19	1,2	14
70.QRLC.1038	10	R3/8	12,5	23,2	40,8	43,5	33	19	1,2	19
70.QRLC.1012	10	R1/2	15	26,2	46,6	51	36	19	1,6	24
70.QRLC.1238	12	R3/8	12,5	24,5	40,8	43,5	35,5	21,5	1,2	19
70.QRLC.1212	12	R1/2	15	27,5	46,6	51	36,5	21,5	1,6	24

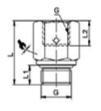

Série QR LG


Référence	ØD	G	L1	L2	L3	L4	L5	Ø D1	Н	4
70.QRLG.0418	4	G1/8	6	15	29	32	23	11,3	0,8	12
70.QRLG.0618	6	G1/8	6	15	29	32	23	13,3	0,8	12
70.QRLG.0614	6	G1/4	8,5	18,5	34,8	37,5	25	13,3	1,2	14
70.QRLG.0818	8	G1,8	6	15,8	29	32	25,8	15	0,8	12
70.QRLG.0814	8	G1/4	8,5	19,5	34,8	37,5	28,9	15	1,2	14
70.QRLG.0838	8	G3/8	10	21,3	40,8	43,5	29,8	15	1,2	19
70.QRLG.1014	10	G1/4	8,5	21,2	34,8	37,5	32,7	19	1,2	14
70.QRLG.1038	10	G3/8	10	23,2	40,8	43,5	33	19	1,2	19
70.QRLG.1012	10	G1/2	12	26,2	46,6	51	36	19	1,6	24
70.QRLG.1238	12	G3/8	10	24,5	40,8	43,5	35,5	21,5	1,2	19
70.QRLG.1212	12	G1/2	12	27,5	46,6	51	36,5	21,5	1,6	24


Valve échappement rapide régulateur silencieux

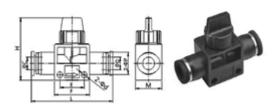
Série QR EG

	Référence	ØD	G	L1	L2	L3	L4(max)	Ø D1	ØD2	S
ı	70.QREG.0818	8	G1/8	5,5	30	29	83	15	25	13
	70.QREG.0814	8	G1/4	6,5	31,5	29	83	15	25	16
	70.QREG.0838	8	G3/8	7,5	33	29	83	15	25	20
	70.QREG.1018	10	G1/8	5,5	30	32	86	19	25	13
	70.QREG.1014	10	G1/4	6,5	31,5	32	86	19	25	16
	70.QREG.1038	10	G3/4	7,5	33	32	86	19	25	20


Raccords à fonction Série QV

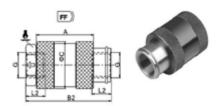
Caractéristiques techniques

Fluide	Air seulement (ni gaz, ni liquide)
Pression au travail	0 - 10 bar
Pression maximale	12 bar
Plages de température	-5° C + 60° C
Vide	-1bar
Tubes recommandés	Nylon, Polyuréthane, Rilsan

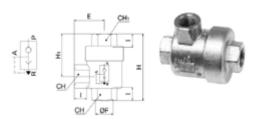

QV VG

Valve unidirectionnelle

Référence	G	L1	L2	L	4
70.QVVG 18	G1/8	5,5	8,5	23	14
70.QVVG 14	G1/4	7,5	11	29,8	17
70.QVVG 38	G3/8	7,5	12	32,9	21
70.QVVG 12	G1/2	10	14	37	24

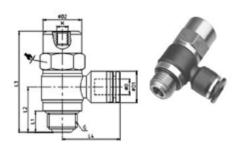


Référence	ØС	ØD	ØΡ	ØD	E	F	L	Н	M
70.QVF 06	6	6	15	4,2	16,5	24	52	41	18
70.QVF 08	8	8	15	4,2	16,5	24	52	41	18
70.QVF 10	10	10	21,5	4,2	21,5	29	63	45	22
70.QVF 12	12	12	21,5	4,2	21,5	29	63	45	22

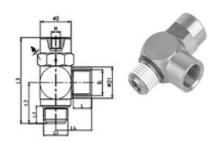

QV S

Valve coulissante

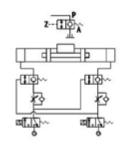
Référence	Α	B2	ØС	L2	G	4
70.QVS 18	20	32	20	8,5	G1/8	14
70.QVS 14	32	48	25	12	G1/4	19
70.QVS 38	32	48	30	13	G3/8	22
70.QVS 12	40	58	37	16	G1/2	27

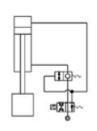

QV SR Valve échappement rapide

Référence	F	I	Н	H1	СН	CH 1	E	P->A	A->R
70.QVSR 18	1/8	8	42	28	14	14	19,5	680	1100
70.QVSR 14	1/4	11	53	34,5	19	19	25	1200	2100
70.QVSR 38	3/8	12	58	36	21	21	26	2300	4900
70.QVSR 12	1/2	14	71	44	26	26	35	3400	6100


QV FG

Valve de blocage d'air


Référence	ØD	G	M	L1	L2	L3	L4	ØD1	ØD2	4
70.QVFG.06 18	6	G1/8	M5	5,5	15	37	23	13,3	13	13
70.QVFG.08 14	8	G1/4	M5	8,5	19,3	43	28,9	15	17	17


QV KG Valve de blocage d'air

Référence	ØD	G	G1	M	ØD1	L	L1	L2	L3	L4	4
70.QVKG.18	13	G1/8	G1/8	M5	13	8,5	5,5	15	37	17	13
70.QVKG.14	17	G1/4	G1/4	M5	16	11	8,5	18	43	20	17

Raccord à fonction

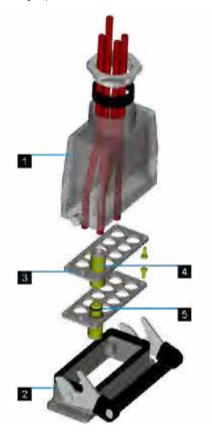
Connecteurs Multi-Coupleurs

Corps du connecteur : Alliage léger moulé

Support embouts : Aluminium Joints d'étanchéité : NBR

Température conseillée : -20°C ÷ 70°C

Max pression d'emploi : 7 bar

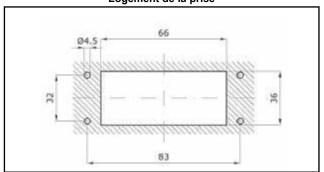

Tubes conseillés: PA11, PA12, PA6, Polyuréthane PU (98 Shore A).

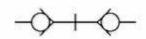
Domaine d'utilisation : circuits pneumatiques

Les connecteurs multi-coupleurs se composent de deux parties :

- une partie mobile à brancher aux armoires de commande des machines actionnées pneumatiquement,
- une partie fixe qui se monte sur l'équipement de distribution d'air.

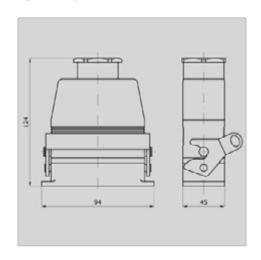
Avantage : pouvoir connecter et déconnecter un faisceau de tube (de 8 à 20 tubes) rapidement et en toute sécurité.

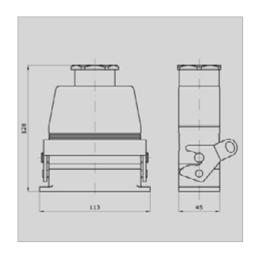

Chape anti poussière pour fiche



Prise avec chape anti poussière

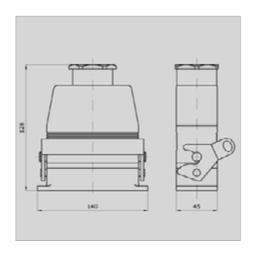
1	Fiche
2	Prise
3	Système pour raccords instantanés
4	Raccords instantanés
5	Joints d'étanchéité


Logement de la prise


A013
Système pour raccords instantanés avec double obturation

Référence	Diamètre tube	N°	Poids (g)
A013 06 06 COMPLETO	6	6	725
A013 08 04 COMPLETO	8	4	674,5

A113


Système pour raccords instantanés passage libre

Référence	Diamètre tube	N°	Poids (g)
A113 04 12 COMPLETO	4	12	732,5
A113 06 10 COMPLETO	6	10	847
A113 08 08 COMPLETO	8	8	811

A213

Système pour raccords instantanés passage libre

Référence	Diamètre tube	N°	Poids (g)
A213 04 20 COMPLETO	4	20	986,3
A213 06 14 COMPLETO	6	14	1128,8
A213 08 10 COMPLETO	8	10	971,8

Raccord à fonction

Connecteurs Multi-Coupleurs

Contre écrou : POM

Douille : POM

Fiche: Aluminium anodisé Prise: Aluminium anodisé

Pivot: Laiton UNI EN12164 CW614N

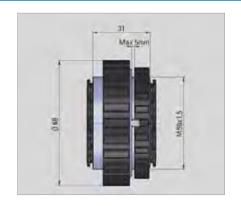
Vis: acier

Température conseillée : -20°C ÷ 70°C

Max pression d'emploi : 12 bar

Tubes conseillés: PA11, PA12, PA6, Polyuréthane PU (98 Shore A).

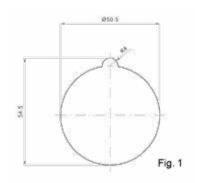
Domaine d'utilisation : circuits pneumatiques

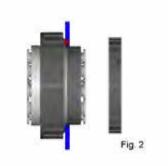


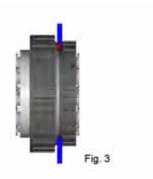
1	Contre écrou
2	Douille
3	Fiche
4	Prise
5	Pivot
6	Vis

B113

Système pour raccords rapides


Référence	Diamètre tube	N°	Poids (g)
B113 04 12 COMPLETO	4	12	198
B113 04 12 PRESA	4	12	-
B113 04 12 SPINA	4	12	-
B113 06 10 COMPLETO	6	10	183
B113 06 10 PRESA	6	10	-
B113 06 10 SPINA	6	10	-
B113 08 08 COMPLETO	8	8	171
B113 08 08 PRESA	8	8	-
B113 08 08 SPINA	8	8	-





Montage à cloison

Dévisser le contre écrou (1) de la prise du connecteur et visser la vis (6) jusqu' elle dépasse son siège, si tant que l'épaisseur de la cloison (Fig 2). Monter la prise à la cloison de façon que la vis loge dans le siège percé dans la cloison (Fig.1). Visser le contre écrou (1) sur la prise jusqu'au fond (Fig 3).

Montage volant

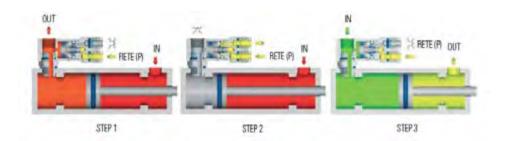
Visser le contre écrou 1 jusqu'au fond tout en le dévissant un peu pour que la vis 6 se trouve en correspondance de son siège A (Fig.5). Visser la vis 6 tout au fond du siège A à l'intérieur du contre écrou (Fig.6).

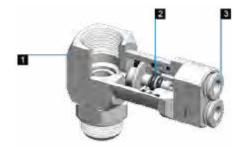
Ainsi, le contre écrou ne pourra plus tourner et servira d'appui pour visser et dévisser la douille 2 tout en permettant le montage et démontage de deux composants du multi coupleur.

Raccord à fonction

Fin de course pneumatique automatique

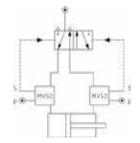
Domaine d'emploi : Circuits pneumatiques avec air filtré et lubrifié. Objectif : Signaler une chute de pression par l'intermédiaire d'un signal de commande (S).


Montage à cloison


- Montage directement sur le vérin.
- Commande de la course du piston sans électricité.

Condition de fonctionnement

- Le piston doit avoir terminé sa course. Positions intermédiaires non permises.
- Température de service: 0°C ÷ 70°C



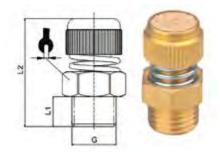
1	Corps	Laiton UNI EN 12164 CW614N Nickelé
2	Joint d'étancheité	NBR-PU
3	Raccords instantanés	Raccords instantanés

		14	
	- pr	. 44	1
		F	1 8
DIG.			25

Pression de service (bar)	Pression de com- mutation (bar)
3	0,3
4	0,5
5	0,65
6	0,9
7	1
8	1,2
9	1,4
10	1.6

Référence	D1	D2	D3	L1	L2	L3	L4	CH1	CH2	gr
70.010.86002	G1/8	4	G1/8	5	11	29,5	38	13	16	69
70.010.86001	G1/4	4	G1/4	6,5	13	33	40	16	16	79
70.010.86003	G3/8	4	G3/8	7	13	33	42	20	20	98

_ in _


Raccords silencieux

QS LG

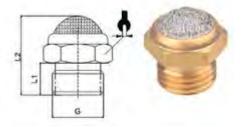
Référence	G	L1	L2	đ
70.QS LG M5	M5	4	18	8
70.QS LG 18	G1/8	6	24	12
70.QS LG 14	G1/4	7,5	30	15
70.QS LG 38	G3/8	9	39	19
70.QS LG 12	G1/2	10,5	46	22

QS DG

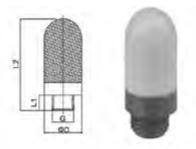

Référence	G	L1	L2	4
70.QS DG M5	M5	4	18	8
70.QS DG 18	G1/8	6	24	12
70.QS DG 14	G1/4	7,5	30	15
70.QS LG 38	G3/8	9	39	19
70.QS LG 12	G1/2	10,5	46	22

QS SG

Référence	G	L1	L2 min	L2 max	4
70.QS SG.18	G1/8	6	36,5	43	12
70.QS SG.14	G1/4	7,5	36,5	48	14
70.QS SG.38	G3/8	9	45	58	17
70.QS SG.12	G1/2	10,5	57	74	24


QS MG

Référence	G	L1	L2	4
70.QS MG.M5	M5	4	8	8
70.QS MG.18	G1/8	6	11,5	12
70.QS MG.14	G1/4	7,5	14	15
70.QS MG.38	G3/8	9	16	19
70.QS MG.12	G1/2	10,5	18	22



QS VG

Référence	G	L1	L2	4
70.QS VG.18	G1/8	6	16	13
70.QS VG.14	G1/4	7,5	19	16
70.QS VG.38	G3/8	9	21	19
70.QS VG.12	G1/2	10,5	23	24

QS EG

Référence	G	ØD	L1	L2	
70.QS EG.18	G1/8	13	6	30	
70.QS EG.14	G1/4	17	7	36	
70.QS EG.38	G3/8	25	10	64	
70.QS EG.12	G1/2	25	10	67	

QS GG

Référence	G	ØD	L1	L2	
70.QS GG.18	G1/8	13	6	30	
70.QS GG.14	G1/4	17	7	36	
70.QS GG.38	G3/8	25	10	64	
70.QS GG.12	G1/2	25	10	67	

QS UG

Référence	G	ØD	L1	L2	В	d 1	4 2
70.QS UG M5	M5	8,5	5	18	0,9	14	8
70.QS UG.18	G1/8	16	6,5	40	1,3	18	12
70.QS GG.14	G1/4	21	10	65	1,3	22	14
70.QS GG.38	G3/8	25	12,5	85	1,5	26	18
70.QS GG.12	G1/2	30	14	94		33	

TUBES ET TUYAUX

RÉSERVOIRS RÉSEAUX D'AIR

SOMMAIRE

l T	ubes

Polyamide	page 30^
Polyuréthane	page 302
Silicone	page 305
PTFE	page 306
PEHD	page 30 ²

Tuyaux

PVC	page 307
Caoutchouc	page 310

Gaines

Gaine de protection	page 313
Gaine d'aspiration	page 314

Tube Polyamide

PA 11 PHL RILSAN®

Bio-Polyamide 11 d'origine végétale dérivée de l'huile de castor. Matière première réalisée pour répondre aux réglementations DIN 73378/74324 (plastifié pour une excellente résistance à la température et à la lumière).

12 couleurs différentes.

Caractéristiques techniques

Domaines d'emploi :

Circuits pneumatiques avec air filtré et lubrifié.

Températures

Plage de températures : -40°C à +80°C.

Pressions en % en fonction des températures.						
20°	30°	40°	50°	60°	70°	80°
100%	83%	72%	64%	58%	52%	47%

Tolérances

- ± 0,07 sur l'épaisseur de la paroi
- ± 0,07 sur le Ø jusqu'à 10 mm
- ± 0,1 sur le Ø de 12 à 22 mm
- ± 0,15 sur le Øe de 26 à 40 mm
- ± 0,5% sur le poids

Propriétés	Spécification	Valeurs
Densité	ISO 1183	1,04 G/cm ³
Base carbon	ASTM 6866	> 89%
Point de fusion	ISO 11357	181°C
Absorption d'eau à l'équilibre	P921LC002	
A 23°C et 50% HR		0,6%
A 23°C dans l'eau		1,4%
Module de tension	ISO 527	345 Mpa
Module de flexion	ISO 178	310 Mpa
Résistance à traction et rupture		
A + 23°C sans entaille	ISO 179/1 eU	Pas de rupture
A - 30°C sans entaille		Pas de rupture
A + 23°C avec entaille	ISO 179/1 eA	Pas de rupture
A - 30°C avec entaille		7 kj/m²
Traction	ISO 527	
Seuil d'écoulement		26 Mpa
Seuil de tension		52%
Charge de rupture		48 Mpa
Déformation de rupture		> 200 %
Température de déformation	ISO 75	
charge de 0,45 mpa		95°C
charge de 1,80 mpa		50°C
Résistance au feu	ASTM D 635	Brûle à 9 mm/min
Dureté	ISO 868	60 shore D

Références

Référence	Dimer (m	nsions m)	Poids	Rayon de courbure	Pression	à 20°
	Ø ext	Ø int	gr. m	mm	d'éclatement	de travail
TR 0,5x1,1	1,1	0,5	0,79	10	150	50
TR 1x2	2	1	2,47	10	133	44
TR 1,5x2	2	1,5	1,44	20	57	19
TR 1,5x2,5	2,5	1,5	3,30	20	100	33
TR 1,6x2,5	2,5	1,6	3,04	20	88	29
TR 1x3	3	1	6,59	15	200	67
TR 1,5x3	3	1,5	5,56	12	133	44
TR 2x3	3	2	4,12	15	80	27
TR 2,5x3	3	2,5	2,27	25	36	12
TR 1,6x3,17	3,17	1,6	6,17	10	132	44
TR 2,18x3,17	3,17	2,18	4,37	20	74	25
TR 3x3,5	3,5	3	2,68	30	31	10
TR 1x4	4	1	12,36	10	240	80
TR 1,5x4	4	1,5	11,33	15	182	61
TR 2x4	4	2	9,89	20	133	44
TR 2,3x4	4	2,3	8,83	20	108	36
TR 2,5x4	4	2,5	8,04	20	92	31
TR 2,7x4	4	2,7	7,18	25	78	26
TR 3x4	4	3	5,77	25	57	19
TR 3,5x4	4	3,5	3,09	35	27	9
TR 3,1x4,75	4,75	3,1	10,68	30	84	28
TR 3x5	5	3	13,19	25	100	33
TR 3,25x5	5	3,25	11,90	27	85	28
TR 3,5x5	5	3,5	10,51	30	71	24
TR 4x5	5	4	7,42	50	44	15
TR 3x6	6	3	21,94	30	133	44
TR 3,5x6	6	3,5	19,30	30	105	35
TR 3,6x6	6	3,6	18,72	30	100	33
TR 4x6	6	4	16,49	35	80	27
TR 4,5x6	6	4,5	12,98	40	57	19
TR 4,35x6,35	6,35	4,35	17,64	40	75	25
TR 4x7	7	4	26,81	45	109	36
TR 5x7	7	5	19,78	38	67	22
TR 6,35x7,93	7,93	6,35	18,60	50	44	15
TR 4x8	8	4	39,00	40	133	44
TR 5x8	8	5	31,69	40	92	31
TR 6x8	8	6	23,08	40	57	19

Référence	Dimen:		Poids	Rayon de courbure	Pression	à 20°
	Ø ext	Ø int	gr. m	mm	d'éclatement	de travail
TR 6x9	9	6	36,76	60	80	26
TR 7x9	9	7	26,38	55	50	17
TR 7x9,52	9,52	7	34,31	50	61	20
TR 6x10	10	6	52,00	60	100	33
TR 6,5x10	10	6,5	46,92	60	85	28
TR 7x10	10	7	41,44	60	71	24
TR 7,5x10	10	7,5	35,55	50	57	19
TR 8x10	10	8	29,67	60	44	15
TR 8x11	11	8	46,56	70	63	21
TR 8x12	12	8	65,00	60	80	27
TR 9x12	12	9	51,19	70	57	19
TR 10x12	12	10	36,27	85	36	12
TR 9,52x12,7	12,7	9,52	57,41	65	57	19
TR 10x14	14	10	78,00	80	67	22
TR 11x14	14	11	60,94	85	48	16
TR 12x14	14	12	42,25	100	31	10
TR 11x15	15	11	84,50	90	62	21
TR 12x15	15	12	65,81	90	44	15
TR 12,5x15	15	12,5	55,86	100	36	12
TR 13x15	15	13	45,50	95	29	10
TR 13x16	16	13	70,70	100	41	14
TR 12x16	16	12	91,00	95	57	19
TR 14x16	16	14	48,75	100	27	9
TR 14x18	18	14	104,00	100	50	17
TR 15x18	18	15	80,44	140	36	12
TR 16x18	18	16	55,25	350	24	8
TR 16x20	20	16	117,00	130	44	15
TR 18x20	20	18	61,75	400	21	7
TR 18x22	22	18	130,00	200	40	13
TR 19x22	22	19	99,93	250	29	10
TR 20x22	22	20	68,25	400	19	6
TR 20x24	24	20	143,00	300	36	12
TR 22x25	25	22	114,56	300	26	9
TR 24x28	28	24	168,99	350	31	10
TR 25x30	30	25	223,43	400	36	12
TR 34x40	40	34	360,74	500	32	11

Tube Polyamide

PA 12 PHL MB-Longlife™

Polyamide 12 : Flexible d'origine chimique, PHL (stabilisé à la lumière, plastifiée).

Matière première réalisée pour répondre aux réglementations DIN 73378/74324 avec une excellente résistance au vieillissement et une stabilité dimensionnelle aux hautes températures, à migration de plastifiant réduite. Peut être fourni en 8 couleurs différentes.

Caractéristiques techniques

Domaine d'emploi :

Circuits pneumatiques avec air filtré et lubrifié.

Applications:

Automatisation industrielle.

Systèmes d'installations de freinage de camion et remorques.

Températures

Plage de températures : -40°C à +80°C.

Pressions en % en fonction des températures.					
20°	40°	60°	80°		
100%	85%	60%	40%		

Tolérances

- ± 0,07 sur l'épaisseur de la paroi
- ± 0,07 sur le Ø jusqu'à 10 mm
- ± 0,1 sur le Ø de 12 à 22 mm
- \pm 0,5% sur le poids

Référence	Dimer (mr	nsions n)	Poids	Rayon de courbure	Pression	à 20°
	Ø ext	Ø int	gr. m	mm	d'éclatement	de travail
PA 2x4	4	2	9,51	20	133	44
PA 2,5x4	4	2,5	7,73	25	92	31
PA 2,7x4	4	2,7	6,91	25	78	26
PA 4x6	6	4	16,01	30	80	27
PA 5x8	8	5	30,92	40	92	31
PA 6x8	8	6	22,42	40	57	19
PA 6x10	10	6	51,24	55	100	33
PA 7x10	10	7	40,84	55	71	24
PA 7,5x10	10	7,5	35,03	60	57	19
PA 8x10	10	8	28,83	60	44	15
PA 9x12	12	9	50,44	60	57	19
PA 10x12	12	10	34,89	85	36	12
PA 10x14	14	10	76,87	75	67	22
PA 11x14	14	11	59,46	85	48	16
PA 11x15	15	11	83,27	85	62	21
PA 12x15	15	12	64,86	90	44	15
PA 12x16	16	12	89,68	95	57	19
PA 14x18	18	14	102,49	100	50	17

Propriétés	Spécifications	Valeurs
Densité	ISO R 1183 D	1,02 G/cm ³
Point de fusion	ASTM D 789	173 °C
Module de flexion	ASTM D 790	420 Mpa
Point de rupture	ASTM D 638	20 Mpa
Allongement à rupture	-	212%
Résistance pression	ASTM D 790	16 Mpa
Dureté	ISO 868	62 shore D

Tube Polyuréthane

PU 98 MB-Longlife™

Polyuréthane d'origine chimique. Base-ester. Différentes couleurs.

Caractéristiques techniques

Domaine d'emploi :

Circuits pneumatiques avec air filtré et lubrifié.

Applications:

Air comprimé et chaînes porte-câbles.

Raccords préconisés :

Raccords rapides.

Températures

Plage de températures : -40°C à +60°C.

Pressions en % en fonction des températures.					
20°	30°	40°	50°	60°	
100%	83%	72%	64%	47%	

Tolérances

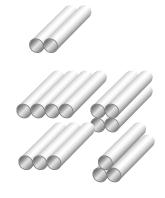
- ± 0,05 sur l'épaisseur de la paroi
- ± 0,05 sur le Ø jusqu'à 10 mm
- ± 0,1 sur le Ø de 12mm
- \pm 0,5% sur le poids

Référence	Dimen (mı		Poids	Rayon de courbure	Pression	à 20°
resession	Ø ext	Ø int	gr. m	mm	d'éclatement	de travail
PU 2x4	4	2	11,68	20	67	22
PU 2,5x4	4	2,5	9,49	20	46	15
PU 2,7x4,3	4,3	2,7	10,90	20	46	15
PU 3x5	5	3	15,57	25	50	17
PU 4x6	6	4 (3,8)	19,47	30	40	13
PU 5x8	8	5	37,96	40	46	15
PU 5,5x8	8	5,5	32,85	45	37	12
PU 6x8	8	6 (5,7)	30,00	40	29	10
PU 6,5x10	10	6,5	56,21	30	42	14
PU 7x10	10	7	49,64	35	35	12
PU 7,5x10	10	7,5	42,59	40	29	10
PU 8x10	10	8 (7,7)	40,00	50	22	7
PU 8x12	12	8	77,87	30	40	13
PU 9x12	12	9	61,32	50	29	10
		Pour é	lagage - Diam	ètres précon	isés	
PU 5,5x8	8	5,5	32,85	45	37	12
PU 7,5x10	10	7,5	42,59	40	29	10
PU 9x12	12	9	61,32	50	29	10

Propriétés	Spécifications	Valeurs
Densité	DIN 53479	1,21 - 1,23 G/cm ³
Perte à l'abrasion	DIN53516	≤ 45 mm³
Seuil d'écoulement	DIN 53504-S2	≥ 35 N/mm³
Allongement à rupture	DIN 53504	≥ 400 %
Résistance pression	DIN 53515	≥ 110 N/mm³
Dureté	DIN 53505	49 - 55 shore D

Multitubes Polyéthylène Série MTP

Tubes de diamètres divers.



Caractéristiques techniques

Sur demande : Différents diamètres de tuyaux disponibles. Polytubes fait avec différents produits.

Référence	Dimensions (mm)		Nb tubes	Volume
	Ø ext	Ø int		mm
MTP 2x4x2	4	2	2	9x5
MTP 4x6x2	6	4	2	13x7
MTP 6x8x2	8	6	2	16x10
MTP 8x10x2	10	8	2	22x12

MTP 4x6x3	6	4	3	14x14 - 20x8
MTP 6x8x3	8	6	3	26x10

MTP 4x6x4	6	1	4	14,44 26,0
IVITP 4XbX4	h	4	4	14x14 - 26x8

Tube Polyethylène Haute Densité

PEHD d'origine chimique. Couleurs : noir ou neutre.

Caractéristiques techniques

Applications:

Utilisation pneumatique.

Températures

Plage de températures : -10°C à +60°C.

ı	Pressions en % en fonction des températures.						
	20°	30°	40°	50°	60°		
	100%	83%	72%	64%	57%		

Référence	Dimen (m	sions nm)	Poids	Rayon de courbure	Pression	à 20°
	Ø ext	Ø int	gr. m	mm	d'éclatement	de travail
TPHD 2,5X4	4	2,5	6,90	20	115	38
TPHD 4X6	6	4	14,07	35	100	33
TPHD 5X8	8	5	27,60	40	115	38
TPHD 6X8	8	6	19,36	40	71	24
TPHD 8X10	10	8	24,45	60	56	19
TPHD 9X12	12	9	43,56	70	71	24

Propriétés	Spécifications	Valeurs
Densité	ASTM D 1505	0,954G/cm ³
Point de fusion	ISO 1872/1-1993	125°C
Charge de rupture	D638	27 Mpa
Allongement à rupture	D638	>600 %
Module de flexion	D790	1200 Mpa
Dureté	ASTM D 2240	64 shore D

Tube Silicone

Série SI

Silicone pur, translucide, non toxique, biologiquement neutre, à hautes caractéristiques.
Souple élastique, flexible, indéformable.
Absence de vieillissement.

Caractéristiques techniques

Résistance aux stérilisations répétées en autoclave et au poupinel (180°C), par irradiation ou action chimique.

Dureté de 60 ±5°ShA,

Densité de 1.2

Résistance à la traction de 9 N/mm²,

Allongement à la rupture à 375%,

Anti-adhérent, hydrophobe,

Satisfait aux tests chimiques de la Pharmacopée Européenne,

Satisfait aux listes positives FDA et BGA ainsi qu'aux tests d'alimentarité selon les directives de la CEE.

Température d'utilisation :

-60°C à +220°C (avec pointes à 250°C).

Utilisation:

Laboratoires, Pharmacies, Médecine.

	Référence	Ø int Ø ext (mm)
	SI0204025	2 x 4
	SI0305025	3 x 5
	SI0306025	3 x 6
	SI0406025	4 x 6
	SI0407025	4 x 7
	SI0408025	4 x 8
	SI0508025	5 x 8
	SI0509025	5 x 10
	SI0510025	6 x 9
	SI0609025	6 x 10
Couronnage 25 m	SI0610025	6 x 12
Coloris transparent	SI0612025	7 x 10
	SI0710025	7 x 13
	SI0713025	8 x 11
	SI0811025	8 x 12
	SI0812025	8 x 14
	SI0814025	10 x 14
	SI1014025	12 x 17
	SI1016025	15 x 21
	SI1217025	18 x 24
	SI1521025	15 x 21
	SI1824025	18 x 24

Délai : 3 semaines

* Minimum de commande : 100m pour Ø<8 et 50m pour Ø>10

Tube PTFE

Excellente résistance aux produits chimiques.

Caractéristiques techniques

Applications:

Le PTFE est utilisé lorsque de hautes températures sont combinées avec un environnement de travail agressif.

Raccords préconisés :

Raccords rapides.

Températures

Plage de températures : -60°C à +260°C.

ı	Pressions en % en fonction des températures.						
	20°	50°	100°	150°	200°		
	100%	50%	35%	30%	10%		

Propriétés	Spécifications	Valeurs
Densité	D 792	2,15 G/cm ³
Point de fusion	ISO 3416C	327°C
Absorption d'eau	D 570	< 0,01
Constante diélectrique	D 150 at 10(10x2) Hz	2,1
Facteur de dissipation diélectrique	D 150 at 10(10x2) Hz	0,0002
Résistance diélectrique (10mils film)	D 149	> 1400 Volt/mil
Volume de résistivité	D 257	> 10(10x17) Ohm/cm
Module de traction	D 638	90000 PSI
Module de flexion à 23°C	D 790	80000 PSI
Allongement	D 1708 - D 638	300 %
Perméabilité	D2863	> 95 %
Résistance au feu	UL 94	V0
Dureté	D 2240	60 shore D

Référence	Ø int. I.D	Tolérance	Mur	Tolérance	Ø ext. O.D	Poids	Rayon de courbure	Pression	à 20°
	mm		mm		mm	gr. m	mm	d'éclatement	de travail
PTFE 1,6x3,17	1,6	± 0,16	0,785	± 0,15	3,17	± 13	13	64	21
PTFE 2x4	2	± 0,16	1	± 0,15	4	± 20	20	60	20
PTFE 2,5x4	2,5	± 0,16	0,75	± 0,15	4	± 16	21	40	13
PTFE 3x5	3	± 0,20	1	± 0,15	5	± 27	25	48	16
PTFE 3,18x6,35	3,18	± 0,20	1,585	± 0,20	6,35	± 51	26	60	20
PTFE 4x6	4	± 0,20	1	± 0,15	6	± 34	35	40	13
PTFE 6x8	6	± 0,25	1	± 0,15	8	± 47	65	30	10
PTFE 6x10	6	± 0,25	2	± 0,20	10	± 108	50	48	16
PTFE 6,35x9,52	6,35	± 0,25	1,585	± 0,20	9,52	± 84	57	38	13
PTFE 8x10	8	± 0,30	1	± 0,15	10	± 60	100	24	8
PTFE 9x12	9	± 0,30	1,5	± 0,17	12	± 105	100	25	8
PTFE 10x12	10	± 0,30	1	± 0,15	12	± 73	150	20	7
PTFE 12x14	12	± 0,35	1	± 0,15	14	± 86	200	17	6
PTFE 12,5x15	12,5	± 0,35	1,25	± 0,15	15	± 114	200	20	7
PTFE 15x18	15	± 0,35	1,5	± 0,15	18	± 164	250	20	7

Tuyaux Série AC - ALFACIER

Tuyau en **PVC** plastifié renforcé d'une spirale en acier. Qualité alimentaire.

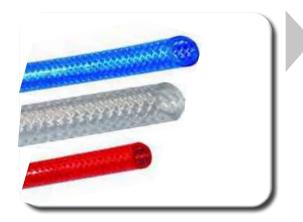
Caractéristiques techniques

Utilisation:

Passage de produits ou liquides alimentaires suivant simulant A, B et C à l'exception de solutions alcooliques titrant + de 15° (agréé par le laboratoire d'essai IANESCO Procès Verbal n°08892 du 31/07/2008).

Aspiration et refoulement basses pressions, pour travaux publics, agriculture, tonnes à lisier, pompage, vidange, rabattage de nappe, etc...

Formellement interdit pour le transport de produits gras (huiles végétales - lait).


Tolérance:

PS (pression de service) à 23° Ø < ou = 50mm : série normale Ø > 50mm : série lourde Tolérances: ± 1 mm

	Réfé- rence	Ø int (mm)	Ep. Paroi (mm)	Poids (g/m)	Ø Courb. (mm)	PS (Bar)	Vide (m/H ₂ O)
	AC080020	80	8.5	2900	410	2	9
	AC090020	90	8,5	3400	430	2	9
Couronnage 20 m Coloris transparent	AC102020	102	8,5	4000	500	2	9
Colons transparent	AC105020	105	9	4200	520	2	9
	AC110020	110	9.5	4750	560	2	9
	AC012030	12	3	185	40	5	9
	AC014030	14	3	210	50	5	9
	AC016030	16	3.5	250	60	5	9
	AC018030	*18	3.5	290	65	4	9
	AC020030	20	3.5	340	70	4	9
	AC022030	*22	3.5	380	75	4	9
	AC025030	25	4	450	75	4	9
	AC030030	30	4	540	80	4	9
Couronnage 30 m Coloris transparent	AC032030	62	4.5	610	90	4	9
Coloris transparent	AC035030	35	4,5	710	100	3	9
	AC038030	38	4,5	790	110	3	9
	AC040030	40	5	860	110	3	9
	AC045030	45	5,5	1000	120	3	9
	AC050030	50	5,5	1200	130	3	9
	AC060030	60	7,5	2000	180	3	9
	AC070030	70	8	2300	360	3	9
	AC076030	76	8	2650	380	2	9
	AC012060	12	3	185	40	5	9
	AC014060	14	3	210	50	5	9
	AC016060	16	3.5	250	60	5	9
	AC018060	*18	3.5	290	65	4	9
	AC020060	20	3.5	340	70	4	9
	AC022060	*22	3.5	380	75	4	9
Couronnage 60 m Coloris transparent	AC025060	25	4	450	75	4	9
Coloris transparent	AC030060	30	4	540	80	4	9
	AC032060	62	4.5	610	90	4	9
	AC035060	35	4,5	710	100	3	9
	AC038060	38	4,5	790	110	3	9
	AC040060	40	5	860	110	3	9
	AC050060	50	5,5	1200	130	3	9
* Sur demande. Délai 4 semaines							

Sur demande. Délai 4 semaines

Tuyaux Série FI - FILCLAIR AL PREMIUM

Tuyau souple polyvalent de qualité alimentaire en **PVC** renforcé par tresse textile de haute ténacité.

Caractéristiques techniques

Utilisation:

Passage de produits ou liquides alimentaires - à l'exception de solutions alcooliques titrant + de 15° GL (agréé par le laboratoire d'essai IANESCO Procès Verbal n° 10617 du 12/09/2008).

Alimentation de machines et outillages à air comprimé.

Passage de gaz industriels, de produits chimiques légers.

Refoulement d'eau ; Déconseillé pour hydrocarbures et dérivés.

Bonne tenue sous vide jusqu'au Ø 25.

Température d'utilisation :

-15°C à +60°C

Pression:

PS (pression de service) à 23°C PLNE (pression limite de non-éclatement) à 23°C

Fi0408025 4 x 8 +/- 0.2 49 40 18 54 6040813 Fi06311025 6.3*11 +/- 0.2 82 50 18 54 6631110 Fi0813025 8*13 +/- 0.5 105 65 15 45 6081311 Fi1015025 10*15 +/- 0.5 131 85 15 45 6101514 Fi11218025 12*18 +/- 0.5 170 105 12 36 6121819 Fi1521025 15*21 +/- 0.5 216 145 10 30 6152110 Fi1622025 16*22 +/- 0.5 222 155 10 30 6192611 Fi2533025 25*33 +/- 0.8 432 235 10 30 6253312 Fi4050025 40 x 50 +/- 1.0 885 240 8 24 6606012 Fi06311050 6.3*11 +/- 0.2 82 50 18 54 6631127 Fi0813050 8*13 +/- 0.5 105 65 15 45 6081328 Fi1015050 10*15 +/- 0.5 131 85 15 45 6081227 Fi1026025 10*26 +/- 0.8 302 10*2 10*2 10*2 30*2 10*2 10*2 10*2 30*2 10*2 10*2 10*2 30*2 10*2 10*2 10*2 30*2 10*2 10*2 10*2 30*2 10*2 10*2 10*2 30*2 10*2 10*2 30*2 10*2 10*2 10*2 30*2 10*2 10*2 10*2 30*2 10*2 10*2 10*2 10*2 10*2 10*2 10*2 1		Référence	Ø int Ø ext (mm)	Poids (g/m)	Ø Courb. (mm)	PS (Bar)	PLNE (Bar)	Code EAN 342256
Couronnage 25 m Coloris transparent Fi0813025 8*13 +/- 0.5 105 65 15 45 6081311 Fi1015025 10*15 +/- 0.5 131 85 15 45 6101514 Fi1128025 12*18 +/- 0.5 170 105 12 36 6121819 Fi1521025 15*21 +/- 0.5 216 145 10 30 6152110 Fi1622025 16*22 +/- 0.5 222 155 10 30 6162218 Fi1926025 19*26 +/- 0.8 302 195 10 30 6192611 Fi2533025 25*33 +/- 0.8 432 235 10 30 6253312 Fi4050025 40 x 50 +/- 1.0 885 240 8 24 6405018 Fi5060025 50 x 60 +/- 1.0 1072 390 8 24 6506012 Fi0813050 4 x 8 +/- 0.2 49 40 18 54 6631127 Fi0813050 8*13 +/- 0.2 82 50 18 54 6631127 Fi0813050 8*13 +/- 0.5 105 65 15 45 6081328 Fi1015050 10*15 +/- 0.5 131 85 15 45 6081328 Fi1105050 10*15 +/- 0.5 131 85 15 45 6081328 Fi1105050 15*21 +/- 0.5 216 145 10 30 6152127 Fi182050 15*21 +/- 0.5 216 145 10 30 6152127 Fi182050 15*21 +/- 0.5 216 145 10 30 6152127 Fi1926050 19*26 +/- 0.8 302 195 10 30 6253329 Fi1926050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI0408025	4 x 8 +/- 0.2	49	40	18	54	6040813
Couronnage 25 m Coloris transparent Fi1015025 10*15 +/- 0.5 131 85 15 45 6101514 Fi1218025 12*18 +/- 0.5 170 105 12 36 6121819 Fi1521025 15*21 +/- 0.5 216 145 10 30 6152110 Fi162025 16*22 +/- 0.5 222 155 10 30 6162218 Fi1926025 19*26 +/- 0.8 302 195 10 30 6192611 Fi2533025 25*33 +/- 0.8 432 235 10 30 6253312 Fi4050025 40 x 50 +/- 1.0 885 240 8 24 6405018 Fi5060025 50 x 60 +/- 1.0 1072 390 8 24 6506012 Fi06311050 6.3*11 +/- 0.2 49 40 18 54 6631127 Fi0813050 8*13 +/- 0.2 82 50 18 54 6631127 Fi0813050 8*13 +/- 0.5 131 85 15 45 6081328 Fi1015050 10*15 +/- 0.5 131 85 15 45 601521 Fi1218050 12*18 +/- 0.5 131 85 15 45 6101521 Fi122050 16*22 +/- 0.5 222 155 10 30 6182127 Fi182050 19*26 +/- 0.8 302 195 10 30 6182225 Fi1926050 19*26 +/- 0.8 302 195 10 30 6192628 Fi2533050 25*33 +/- 0.8 432 235 10 30 6253329 Fi4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI06311025	6.3*11 +/- 0.2	82	50	18	54	6631110
Couronnage 25 m Coloris transparent Fi1218025		FI0813025	8*13 +/- 0.5	105	65	15	45	6081311
Coloris transparent FI1521025 15*21 +/- 0.5 216 145 10 30 6152110 FI1622025 16*22 +/- 0.5 222 155 10 30 6162218 FI1926025 19*26 +/- 0.8 302 195 10 30 6192611 FI2533025 25*33 +/- 0.8 432 235 10 30 6253312 FI4050025 40 x 50 +/- 1.0 885 240 8 24 6405018 FI5060025 50 x 60 +/- 1.0 1072 390 8 24 6506012 FI0408050 4 x 8 +/- 0.2 49 40 18 54 6040820 FI06311050 6.3*11 +/- 0.2 82 50 18 54 6631127 FI0813050 8*13 +/- 0.5 105 65 15 45 6081328 FI1015050 10*15 +/- 0.5 131 85 15 45 6101521 FI11218050 12*18 +/- 0.5 170 105 12 36 6121826 FI1622050 16*22 +/- 0.5 216 145 10 30 6152127 FI1926050 19*26 +/- 0.8 302 195 10 30 6162225 FI1926050 25*33 +/- 0.8 432 235 10 30 6253329 FI4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI1015025	10*15 +/- 0.5	131	85	15	45	6101514
Coloris transparent F1321025 15 21 +1- 0.5 21 155 10 30 6162218 F11622025 19*26 +/- 0.8 302 195 10 30 6192611 F12533025 25*33 +/- 0.8 432 235 10 30 6253312 F14050025 40 x 50 +/- 1.0 885 240 8 24 6405018 F15060025 50 x 60 +/- 1.0 1072 390 8 24 6506012 F10408050 4 x 8 +/- 0.2 49 40 18 54 6040820 F106311050 6.3*11 +/- 0.2 82 50 18 54 6631127 F10813050 8*13 +/- 0.5 105 65 15 45 6081328 F11015050 10*15 +/- 0.5 131 85 15 45 6101521 F11218050 12*18 +/- 0.5 170 105 12 36 6121826 F11521050 15*21 +/- 0.5 216 145 10 30 6152127 F11622050 16*22 +/- 0.5 222 155 10 30 6162225 F11926050 19*26 +/- 0.8 302 195 10 30 6192628 F12533050 25*33 +/- 0.8 432 235 10 30 6253329 F14050050 40 x 50 +/- 1.0 885 240 8 24 6405025	2	FI1218025	12*18 +/- 0.5	170	105	12	36	6121819
FI16/20025 16*22 +f-0.5 222 155 10 30 616/218 FI1926025 19*26 +f-0.8 302 195 10 30 6192611 FI2533025 25*33 +f-0.8 432 235 10 30 6253312 FI4050025 40 x 50 +f-1.0 885 240 8 24 6405018 FI5060025 50 x 60 +f-1.0 1072 390 8 24 6506012 FI0408050 4 x 8 +f-0.2 49 40 18 54 6040820 FI06311050 6.3*11 +f-0.2 82 50 18 54 6631127 FI0813050 8*13 +f-0.5 105 65 15 45 6081328 FI1015050 10*15 +f-0.5 131 85 15 45 6101521 FI1218050 12*18 +f-0.5 170 105 12 36 6121826 FI1521050 15*21 +f-0.5 216 145 10 30 6152127 FI1622050 16*22 +f-0.8 302 195 10 30 6192628 FI2533050 25*33 +f-0.8 432 235 10 30 6253329 FI4050050 40 x 50 +f-1.0 885 240 8 24 6405025		FI1521025	15*21 +/- 0.5	216	145	10	30	6152110
Fi2533025 25*33 +/- 0.8 432 235 10 30 6253312 Fi4050025 40 x 50 +/- 1.0 885 240 8 24 6405018 Fi5060025 50 x 60 +/- 1.0 1072 390 8 24 6506012 Fi0408050 4 x 8 +/- 0.2 49 40 18 54 6040820 Fi06311050 6.3*11 +/- 0.2 82 50 18 54 6631127 Fi0813050 8*13 +/- 0.5 105 65 15 45 6081328 Fi1015050 10*15 +/- 0.5 131 85 15 45 6101521 Fi1218050 12*18 +/- 0.5 170 105 12 36 6121826 Fi1521050 15*21 +/- 0.5 216 145 10 30 6152127 Fi1622050 16*22 +/- 0.5 222 155 10 30 6162225 Fi1926050 19*26 +/- 0.8 302 195 10 30 6192628 Fi2533050 25*33 +/- 0.8 432 235 10 30 6253329 Fi4050050 40 x 50 +/- 1.0 885 240 8 24 6405025	Coloris transparent	FI1622025	16*22 +/- 0.5	222	155	10	30	6162218
FI4050025 40 x 50 +/- 1.0 885 240 8 24 6405018 FI5060025 50 x 60 +/- 1.0 1072 390 8 24 6506012 FI0408050 4 x 8 +/- 0.2 49 40 18 54 6040820 FI06311050 6.3*11 +/- 0.2 82 50 18 54 6631127 FI0813050 8*13 +/- 0.5 105 65 15 45 6081328 FI1015050 10*15 +/- 0.5 131 85 15 45 6101521 FI1218050 12*18 +/- 0.5 170 105 12 36 6121826 FI1521050 15*21 +/- 0.5 216 145 10 30 6152127 FI1622050 16*22 +/- 0.5 222 155 10 30 6192628 FI1926050 19*26 +/- 0.8 302 195 10 30 6253329 FI4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI1926025	19*26 +/- 0.8	302	195	10	30	6192611
FI5060025 50 x 60 +/- 1.0 1072 390 8 24 6506012 FI0408050 4 x 8 +/- 0.2 49 40 18 54 6040820 FI06311050 6.3*11 +/- 0.2 82 50 18 54 6631127 FI0813050 8*13 +/- 0.5 105 65 15 45 6081328 FI1015050 10*15 +/- 0.5 131 85 15 45 6101521 FI1218050 12*18 +/- 0.5 170 105 12 36 6121826 FI1521050 15*21 +/- 0.5 216 145 10 30 6152127 FI1622050 16*22 +/- 0.5 222 155 10 30 6162225 FI1926050 19*26 +/- 0.8 302 195 10 30 6192628 FI2533050 25*33 +/- 0.8 432 235 10 30 6253329 FI4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI2533025	25*33 +/- 0.8	432	235	10	30	6253312
FI0408050 4 x 8 +/- 0.2 49 40 18 54 6040820 FI06311050 6.3*11 +/- 0.2 82 50 18 54 6631127 FI0813050 8*13 +/- 0.5 105 65 15 45 6081328 FI1015050 10*15 +/- 0.5 131 85 15 45 6101521 FI1218050 12*18 +/- 0.5 170 105 12 36 6121826 FI1521050 15*21 +/- 0.5 216 145 10 30 6152127 FI1622050 16*22 +/- 0.5 222 155 10 30 6162225 FI1926050 19*26 +/- 0.8 302 195 10 30 6253329 FI4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI4050025	40 x 50 +/- 1.0	885	240	8	24	6405018
FI06311050 6.3*11 +/- 0.2 82 50 18 54 6631127 FI0813050 8*13 +/- 0.5 105 65 15 45 6081328 FI1015050 10*15 +/- 0.5 131 85 15 45 6101521 FI1218050 12*18 +/- 0.5 170 105 12 36 6121826 FI1521050 15*21 +/- 0.5 216 145 10 30 6152127 FI1622050 16*22 +/- 0.5 222 155 10 30 6162225 FI1926050 19*26 +/- 0.8 302 195 10 30 6253329 FI4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI5060025	50 x 60 +/- 1.0	1072	390	8	24	6506012
Couronnage 50 m Coloris transparent Fi0813050 8*13 +/- 0.5 105 65 15 45 6081328 Fi1015050 10*15 +/- 0.5 131 85 15 45 6101521 Fi1218050 12*18 +/- 0.5 170 105 12 36 6121826 Fi1521050 15*21 +/- 0.5 216 145 10 30 6152127 Fi1622050 16*22 +/- 0.5 222 155 10 30 6162225 Fi1926050 19*26 +/- 0.8 302 195 10 30 6253329 Fi2533050 25*33 +/- 0.8 432 235 10 30 6253329 Fi4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI0408050	4 x 8 +/- 0.2	49	40	18	54	6040820
Couronnage 50 m Coloris transparent Fil1015050 10*15 +/- 0.5 131 85 15 45 6101521 Fil218050 12*18 +/- 0.5 170 105 12 36 6121826 Fil521050 15*21 +/- 0.5 216 145 10 30 6152127 Fil622050 16*22 +/- 0.5 222 155 10 30 6162225 Fil926050 19*26 +/- 0.8 302 195 10 30 6192628 Fil2533050 25*33 +/- 0.8 432 235 10 30 6253329 Fil4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI06311050	6.3*11 +/- 0.2	82	50	18	54	6631127
Couronnage 50 m Coloris transparent Fi1218050 12*18 +/- 0.5 170 105 12 36 6121826 Fi1521050 15*21 +/- 0.5 216 145 10 30 6152127 Fi1622050 16*22 +/- 0.5 222 155 10 30 6162225 Fi1926050 19*26 +/- 0.8 302 195 10 30 6192628 Fi2533050 25*33 +/- 0.8 432 235 10 30 6253329 Fi4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI0813050	8*13 +/- 0.5	105	65	15	45	6081328
Coloris transparent Fi1521050 15*21 +/- 0.5 216 145 10 30 6152127 Fi1622050 16*22 +/- 0.5 222 155 10 30 6162225 Fi1926050 19*26 +/- 0.8 302 195 10 30 6192628 Fi2533050 25*33 +/- 0.8 432 235 10 30 6253329 Fi4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI1015050	10*15 +/- 0.5	131	85	15	45	6101521
Coloris transparent F11521050 15*21 +/- 0.5 216 145 10 30 6152127 F11622050 16*22 +/- 0.5 222 155 10 30 6162225 F11926050 19*26 +/- 0.8 302 195 10 30 6192628 F12533050 25*33 +/- 0.8 432 235 10 30 6253329 F14050050 40 x 50 +/- 1.0 885 240 8 24 6405025	Causana ana 50 m	FI1218050	12*18 +/- 0.5	170	105	12	36	6121826
F11622050 16*22 +/- 0.5 222 155 10 30 6162225 F11926050 19*26 +/- 0.8 302 195 10 30 6192628 F12533050 25*33 +/- 0.8 432 235 10 30 6253329 F14050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI1521050	15*21 +/- 0.5	216	145	10	30	6152127
FI2533050 25*33 +/- 0.8 432 235 10 30 6253329 FI4050050 40 x 50 +/- 1.0 885 240 8 24 6405025	Coloris transparent	FI1622050	16*22 +/- 0.5	222	155	10	30	6162225
FI4050050 40 x 50 +/- 1.0 885 240 8 24 6405025		FI1926050	19*26 +/- 0.8	302	195	10	30	6192628
		FI2533050	25*33 +/- 0.8	432	235	10	30	6253329
E15050050		FI4050050	40 x 50 +/- 1.0	885	240	8	24	6405025
F10000000 50 x 00 +/- 1.0 1072 590 6 24 0000029		FI5060050	50 x 60 +/- 1.0	1072	390	8	24	6506029

Autres longueurs sur demande

	Référence	Ø int Ø ext (mm)	Poids (g/m)	Ø Courb. (mm)	PS (Bar)	PLNE (Bar)
	FIBLT1015025	10*15	131	85	15	45
Couronnage 25 m	FIRT1015025	10*15	131	85	15	45
Coloris bleu ou rouge transparent	FIBLT1218025	12*18	170	105	12	36
in an opai one	FIRT1218025	12*18	170	105	12	36
	FIBLT1015050	10*15	131	85	15	45
Couronnage 50 m Coloris bleu ou rouge	FIRT1015050	10*15	131	85	15	45
transparent	FIBLT1218050	12*18	170	105	12	36
transparent	FIRT1218050	12*18	170	105	12	36

* sur demande: commandemin :500 m délai: 3 semaines

Revêtement autres coloris sur demande: majoration de 10% - délai: 3 semaines - Minimum de commande 1000m jusqu\'au Ø12; 500m au dessus

Tuyaux CRISTAL CR

Tuyau souple mono couche. Qualité alimentaire (Procès Verbal IANESCO nr 10482 van 28/12/1990).

Caractéristiques techniques

Utilisation:

Produits alimentaires, Laboratoires médicaux, Usages industriels divers.

Référence	Diamètre (mm)	Poids (g/m)	Couronnage (m)
CR0204	2 x 4	12	100
CR0305	3 x 5	16	100
CR0306	3 x 6	26	100
CR0406	4 x 6	20	100
CR0407	4 x 7	32	50 - 100
CR0408	4 x 8	47	50 - 100
CR0507	5 x 7	24	50 - 100
CR0508	5 x 8	39	50 - 100
CR0608	6 x 8	28	50 - 100
CR0609	6 x 9	44	50 - 100
CR0610	6 x 10	64	50 - 100
CR0612	6 x 12	108	50 - 100
CR0710	7 x 10	50	50 - 100
CR0810	8 x 10	35	50 - 100
CR0811	8 x 11	56	25 - 50 - 100
CR0812	8 x 12	79	25 - 50 - 100
CR0814	8 x 14	132	50
CR0912	9 x 12	61	50
CR0913	9 x 13	88	50
CR1013	10 x 13	68	50
CR1014	10 x 14	94	25 - 50 - 100
CR1016	10 x 16	112	50
CR1216	12 x 16	110	25 - 50 - 100
CR1217	12 x 17	145	50
CR1319	13 x 19	192	50
CR1418	14 x 18	126	50
CR1419	14 x 19	165	50
CR1519	15 x 19	134	50
CR1520	15 x 20	171	50
CR1521	15 x 21	216	50
CR1620	16 x 20	141	50
CR1621	16 x 21	185	50
CR1622	16 x 22	224	50

Température d'utilisation :

-15°C à +60°C.

Pression de service :.

Faible pression d'utilisation.

Référence	Diamètre (mm)	Poids (g/m)	Couronnage (m)
CR1822	18 x 22	158	50
CR1823	18 x 23	205	25 - 50
CR1824	18 x 24	252	50
CR1924	19 x 24	211	50
CR1926	19 x 26	309	50
CR2024	20 x 24	173	50
CR2025	20 x 25	225	25 - 50
CR2026	20 x 26	270	50
CR2228	22 x 28	275	50
CR2430	24 x 30	317	25 - 50
CR2531	25 x 31	330	25 - 50
CR2532	25 x 32	400	25 - 50
CR2533	25 x 33	455	25 - 50
CR2535	25 x 35	600	25 - 50
CR2733	27 x 33	354	25 - 50
CR2836	28 x 36	500	25
CR3037	30 x 37	460	25 - 50
CR3038	30 x 38	534	25 - 50
CR3040	30 x 34	688	25
CR3240	32 x 40	565	25 - 50
CR3242	32 x 42	726	25 - 50
CR3542	35 x 42	529	25 - 50
CR3545	35 x 45	800	25
CR3848	38 x 48	844	25 - 50
CR4048	40 x 48	691	25 - 50
CR4049	40 x 49	801	25 - 50
CR4050	40 x 50	900	25 - 50
CR4555	45 x 55	1000	25
CR5060	50 x 60	1080	25 - 50
CR6070	60 x 70	1276	25

Tuyaux caoutchouc Air comprimé - 15 bar

Caractéristiques techniques

Tube intérieur SBR/NR noir, Trame textile, Revêtement EPDM/NR noir, Ne résiste pas aux hydrocarbures .

Utilisation:

Refoulement d'air pour industrie et travaux publics.

Température d'utilisation :

-20°C à +80°C.

Pression de service :

15 bar.

Marquage:

AC - 15bar - DN - AX + n° lot

	Référence	Ø int Ø ext (mm)	Poids (g/m)	Ø Courb. (mm)	PS (Bar)	PLNE (Bar)
	TAC0613020	6 x 13	160	60	15	38
	TAC0815020	8 x 15	180	70	15	38
	TAC1017020	10 x 17	220	80	15	38
Couronnage 20 m Coloris Noir mat	TAC1321020	13 x 21	270	90	15	38
Coloris Non mat	TAC1623020	16 x 23	320	130	15	38
	TAC2029020	20 x 29	510	190	15	38
	TAC2534020	25 x 34	620	250	15	38
	TAC0613040	6 x 13	160	60	15	38
	TAC0815040	8 x 15	180	70	15	38
	TAC1017040	10 x 17	220	80	15	38
Couronnage 40 m Coloris Noir mat	TAC1321040	13 x 21	270	90	15	38
Colons Non mat	TAC1623040	16 x 23	320	130	15	38
	TAC2029040	20 x 29	510	190	15	38
	TAC2534040	25 x 34	620	250	15	38

Tuyaux caoutchouc Air comprimé antistatique

Caractéristiques techniques

Tube intérieur SBR/NR noir, Trame polyester, Revêtement NBR/PVC bleu,

Conductibilité électrique : résistance antistatique R < 106 Ohm.

Utilisation:

Transport d'air dans les garages, les salles de peinture, Le revêtement résiste à la peinture, aux huiles et à l'abrasion. Température d'utilisation :

-30°C à +70°C.

Pression de service :

20 bar.

Marquage:

AC - AS 20 bar - DN - AX + n° lot

	Référence	Ø int Ø ext (mm)	Poids (g/m)	Ø Courb. (mm)	PS (Bar)	PLNE (Bar)
	TACAS0613020	6 x 13	160	120	20	60
	TACAS0714020	7 x 14	175	140	20	60
Couronnage 20 m	TACAS0815020	8 x 15	185	160	20	60
Coloris Bleu mat	TACAS0916020	* 9 x 16	200	180	20	60
	TACAS1018020	10 x 18	260	200	20	60
	TACAS1220020	* 12 x 20	300	140	20	60
	TACAS0613040	6 x 13	160	120	20	60
	TACAS0714040	7 x 14	175	140	20	60
Couronnage 40 m	TACAS0815040	8 x 15	185	160	20	60
Coloris Bleu mat	TACAS0916040	* 9 x 16	200	180	20	60
	TACAS1018040	10 x 18	260	200	20	60
	TACAS1220040	* 12 x 20	300	140	20	60

^{*} Pour longueur de 40m : sur demande - Délai : 2 semaines.

Tuyaux caoutchouc

Multiservice - Hydrocarbures

Tube intérieur NBR noir antistatique, Trame textile, Revêtement CR/SBR noir.

Caractéristiques techniques

Utilisation:

Refoulement huiles - Gazole - Eau - Air.

Température d'utilisation :

-40°C à +80°C - Pointes à +100°C.

Pression de service :

25 bar .

	Référence	Ø int Ø ext (mm)	Poids (g/m)	Ø Courb. (mm)	PS (Bar)	PLNE (Bar)
	TACMS0614020	6 x 14	150	80	25	80
	TACMS0816020	8 x 16	200	100	25	80
Couronnage 20 m	TACMS1018020	10 x 18	250	120	25	80
Coloris Noir	TACMS1321020	13 x 21	300	160	25	80
avec rayures rouges	TACMS1625020	16 x 25	400	200	25	80
	TACMS1929020	19 x 29	500	240	25	80
	TACMS2536020	25 x 36	700	300	25	80
	6 x 14	6 x 14	150	80	25	80
	8 x 16	8 x 16	200	100	25	80
Couronnage 50 m	10 x 18	10 x 18	250	120	25	80
Coloris Noir	13 x 21	13 x 21	300	160	25	80
avec rayures rouges	16 x 25	16 x 25	400	200	25	80
	19 x 29	19 x 29	500	240	25	80
	25 x 36	25 x 36	700	300	25	80

Gaines de protection spiralées

GSP

Profilés plats aux bords arrondis - PVC rigide.

Caractéristiques techniques

Résistance: Chocs et frottements - Hydrocarbures - Acides et sels correspondants - Alcool et gaz - Air salin.

Diamètres intérieurs de 6mm à 190mm. Excellente tenue aux U.V.

Profilé 8 x 1 - Coloris : Noir

Profilé 20 x 4 - Coloris : Noir

Profile 20 x 4 - Coloris : Noir					
Référence	Diamètre int (mm)				
40	GPS040204030				
42	GPS042204030				
45	GPS045204020				
48	GPS048204020				
50	GPS050204020				
55	GPS055204020				
60	GPS060204020				
65	GPS065204015				
70	GPS070204015				
75	GPS075204015				
80	GPS080204015				
90	GPS090204005				
100	GPS100204005				

Profilé 16 x 1 - Coloris : Noir

Référence	Diamètre int (mm)
13	GPS013161100
14	GPS014161100
15	GPS015161100
16	GPS016161100
17	GPS017161100
18	GPS018161100
20	GPS020161050
21	GPS021161050
22	GPS022161050
25	GPS025161050
28	GPS028161030
30	GPS030161030

Profilé 25 x 3 - Coloris : Noir

Référence	Diamètre int (mm)
50	GPS050253020
55	GPS055253020
60	GPS060253020
65	GPS065253015
70	GPS070253015
75	GPS075253015
80	GPS080253015
90	GPS090253005
100	GPS100253005
110	GPS110253005
125	GPS125253005

Température d'utilisation :

+70°C.

Profilé 16 x 2 - Coloris : Noir

Référence	Diamètre int (mm)
16	GPS016162100
17	GPS017162100
18	GPS018162100
20	GPS020162050
21	GPS021162050
22	GPS022162050
25	GPS025162050
28	GPS028162030
30	GPS030162030
33	GPS033162030
35	GPS035162030
38	GPS038162030
40	GPS040162030
42	GPS042162030
45	GPS045162020
48	GPS048162020
50	GPS050162020
55	GPS055162020
60	GPS060162020
65	GPS065162015
70	GPS070162015
75	GPS075162015
80	GPS080162015

Gaine

Gaine flexible en PVC souple renforcée d'une spirale en PVC rigide anti-chocs.

Surface intérieure lisse.

Caractéristiques techniques

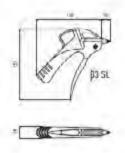
Utilisation:

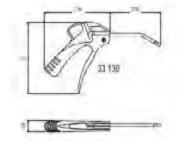
Aération-Ventilation, Dépoussiérage non abrasif, Ecoulement de liquide sans pression.

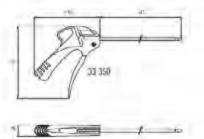
Température d'utilisation :

de 0 à +60°C.

	Référence	Diamètre	Epaisseur paroi	Poids	Rayon de courbure	Vide
		mm	mm	gr. m	mm	m/H ₂ O
Couronnage 15	ASN180015	180	1,15	2200	580	3
Coloris Gris	ASN200015	200	1,2	2600	760	2,5
	ASN020025	20	0,75	125	60	5
	ASN025025	25	0,75	150	60	5
	ASN030025	30	0.8	190	80	5
	ASN032025	32	0.8	205	80	4.5
	ASN035025	35	0.8	235	90	4.5
	ASN038025	*38	0.8	255	90	4.5
	ASN040025	40	0.85	290	100	4
	ASN045025	45	0.85	360	120	4
	ASN050025	50	0.85	440	120	4
	ASN060025	60	0,85	500	140	4
Couronnage 25 m	ASN063025	63	0,9	535	150	4
Coloris gris	ASN070025	70	0,9	590	170	4
	ASN075025	75	0,9	640	190	4
	ASN080025	80	0,95	740	230	4
	ASN090025	90	0,95	850	260	4
	ASN100025	100	1	970	280	4
	ASN110025	110	1	1050	300	4
	ASN120025	120	1	1150	320	4
	ASN125025	125	1	1240	330	4
	ASN140025	140	1,1	1440	360	3,5
	ASN150025	150	1,1	1700	360	3,5
	ASN160025	160	1,15	1900	400	3,5


Accessoires


Soufflettes


Corps : PDM Ressort : Acier Inox Joint torique : NBR Tube : Laiton Nickelé Pression max: 6 bar

Température de service : -10° + 70°C Filetage de connexion : BSP-NPT

Туре	dB (6bar)	Poids (g)
33SL	75,1	98
33 130	79,5	112
33 350	79,2	146

Coupe Tube

Туре	diamètre tube	L	Poids (g)
3412	de 2 à 12	130	99,5
3425	de 12 à 25	185	293

Débit d'air

Jn.	_			Tempé	rature en	amont d	lu gicleur	= + 15°	С						
Diamètre Gicleur	Section Gicleur		Pression de l'air en amont du gicleur exprimée en bar												
mm	mm	0,5	1	2	3	4	5	6	7	8	10	12	15	20	30
0,1	0,008	0,0001	0,0002	0,0003	0,0004	0,0005	0,0006	0,0007	0,0007	0,0008	0,001	0,0012	0,0015	0,002	0,0029
0,2	0,03	0,0005	0,0007	0,0011	0,0015	0,0019	0,0022	0,0026	0,003	0,0033	0,0041	0,0048	0,0059	0,0078	0,0115
0,3	0,07	0,0012	0,0017	0,0025	0,0033	0,0042	0,005	0,0059	0,0067	0,0075	0,0092	0,0109	0,0134	0,0175	0,0259
0,5	0,2	0,0033	0,0047	0,007	0,0093	0,0116	0,0139	0,0162	0,0186	0,0209	0,0255	0,0301	0,0374	0,0487	0,0718
1	0,8	0,0134	0,085	0,0278	0,0371	0,0464	0,0557	0,065	0,0742	0,0835	0,1021	0,12	0,148	0,195	0,287
1,5	1,8	0,03	0,042	0,063	0,084	0,104	0,25	0,146	0,167	0,188	0,23	0,272	0,335	0,044	0,65
2	3,1	0,054	0,074	0,111	0,148	0,185	0,222	0,26	0,296	0,334	0,408	0,482	0,594	0,078	1,15
3	7,1	0,121	0,167	0,251	0,334	0,418	0,501	0,585	0,668	0,752	0,919	1,09	1,34	1,75	2,59
4	12,6	0,216	0,297	0,447	0,595	0,745	0,894	1,04	1,19	1,34	1,64	1,94	2,38	3,13	4,61
5	19,6	0,333	0,465	0,695	0,927	1,16	1,39	1,62	1,86	2,09	2,55	3,01	3,71	4,87	7,18
6	28,3	0,48	0,7	1,00	1,34	1,67	2,01	2,34	2,68	3,01	3,68	4,35	5,35	7,02	10,4
8	50,3	0,86	1,19	1,78	2,38	2,97	3,57	4,16	4,76	5,35	6,54	7,73	9,51	12,5	18,4
10	78,5	1,34	1,85	2,78	3,71	4,64	5,57	6,5	7,42	8,35	10,21	12,1	14,8	19,5	28,8
12	113	1,93	2,66	4,01	5,34	6,68	8,01	9,35	10,7	12	14,7	17,4	21,4	28	41,4
15	177	3,02	4,17	6,28	8,37	10,4	12,5	14,6	16,7	18,8	23	27,2	33,5	43,9	64,9
20	314	5,37	7,4	11,1	14,8	18,5	22,2	26	29,6	33,4	40,8	48,2	59,4	78	115
25	491	8,35	11,6	17,4	23,2	29	34,8	40,6	46,6	52,2	63,8	75,5	92,9	121,9	
30	707	12,1	16,7	25,1	33,4	41,8	50,1	58,5	66,8	75,2	91,9	108,6	134		
35	962	16,4	22,8	34,1	45,5	56,9	68,2	79,6	91,5	102	125				
40	1257	21,3	29,7	44,6	59,4	74,3	89,1	104	119						
45	1590	27,2	37,5	56,4	75,2	94	113								
50	1964	33,4	46,5	69,6	92,9	116									
55	2376	4,4	56,1	84,3	112,3										
60	2827	48,1	66,9	100	133,7										

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
0-phenilphenol		-	nr	80	80	-	-	-	-	-
A Acetaldehyde	C ₂ H ₄ O	40 % in water	40/L	nr	nr	0	20/L	L		-
Acetamide	C ₂ H ₅ NO		- TO/L	nr	25	0	20	R	_	_
Acetanilide	C ₈ H ₉ NO	_	_	-	_	-	R	R	_	_
Acetic Acid	C ₂ H ₄ O ₂	80% in water	nr	65	50	0	20/L	Ĺ	-	_
Acetic Acid	C ₂ H ₄ O ₂	3% in water	40/L _b	R	R	0	R	R	nr	L
Acetic Acid	C ₂ H ₄ O ₂	10% in water	20/L _b	R	R	0	R	R	-	-
Acetic Anhydride	C ₄ H ₆ O ₃	-	20/L _b	nr	nr	0	20/L	L	-	-
Acetone	C ₃ H ₆ O	10% in water	-	50	40	0	L	L	-	-
Acetone	C ₃ H ₆ O	-	60/L	nr	nr	0	20/L	L	-	-
Acetonitrile	C ₂ H ₃ N	-	-	50	nr	0	-	-	-	-
Acetophenone	C ₈ H ₈ O	-	-	nr	nr	0	20/L	20	-	-
Acetyl Bromide	C ₂ H ₃ BrO	-	-	50	50	-	-	-	-	-
Acetyl Chloride	C ₂ H ₃ ClO	-	-	50	50	-	-	-	-	-
Acetylacetone	C ₅ H ₈ O ₂	-	-	nr	nr	-	-	-	-	-
Acetylene	C ₂ H ₂	-	R	R	65	0	-	20	-	-
Acetylsalicylic acid	C ₉ H ₈ O ₄	-	-	-	-	-	R	R	-	-
Acrylonitrile	C ₃ H ₃ N	-	-	25	25	0	L	R	-	-
Adipic Acid	C ₆ H ₁₀ O ₄	Sat. Solution	R	65	65	0	R	R	-	-
After Shave	-	=	-	-	-	0	nr	nr	-	-
Air	-	=	R	R	R	R	R	R	R	R
Alcoholic Spirits	-	40% Ethyl Alcohol	-	95	R	0	-	-	-	-
Aliphatic hydrocarbons	-	-	-	-	-	nr	20/L	L	-	-
Allyl Alcohol	C ₃ H ₆ O	-	-	50	50	0	20/L	R	-	-
Allyl Chloride	C ₃ H ₅ Cl	-	-	R	R	-	20/L	20/L	-	-
Alum	-	Aqueous solution	R	R	R	-	R	R	-	-
Aluminum Acetate	C ₆ H ₉ AlO ₆	Aqueous solution or solid	-	R	R	-	-	-	-	-
Aluminum Bromide	AlBr ₃	-	-	R	R	-	-	-	-	-
Aluminum Chloride	AICI ₃	up to 40% in water	20	R	R	0	R	R	-	-
Aluminum Fluoride	AIF ₃	Aqueous solution or solid	20	R	R	-	R	R	-	-
Aluminum Hydroxide	AI(OH) ₃	-	20	R	R	0	R	R	-	-
Aluminum Nitrate	AI(NO ₃) ₃	Aqueous solution or solid	-	R	R	-	R	R	-	-
Aluminum Oxychloride	-	-	-	R	R	-	R	R	-	-
Aluminum Sulfate	Al ₂ (SO ₄) ₃	Aqueous solution or solid	R	R	R	0	R	R	-	-
Aminobenzoic acid	-	-	-	-	-	-	R	R	-	-
Ammonia, dry gas	NH ₃	-	L	nr	nr	0	R	R	-	-
Ammonia, liquid	NH ₃	-	R	nr	nr	0	L	R	-	-
Ammonium Acetate	CH ₃ COONH ₄	Aqueous solution or solid	50	80	65	0	R	R	-	-
Ammonium Alum	(NH ₄)AI(SO ₄) ₂	Aqueous solution or solid	-	R	R	-	-	-	-	-
Ammonium Bifluoride	NH ₄ HF ₂	Aqueous solution or solid	-	65	65	-	-	-	-	-
Ammonium Bromide	NH ₄ Br	Aqueous solution or solid	-	R	R	0	-	-	-	-
Ammonium Carbonate	(NH ₄) ₂ CO ₃	Aqueous solution or solid	60	R	R	0	R	R	-	-
Ammonium Chloride	(NH ₄)Cl	3% in water	R	R	R	0	R	R	L	L
Ammonium Chloride Ammonium Dichromate	(NH ₄)CI	Aqueous solution or solid Aqueous solution or solid	R	R	R	0	R	R	-	-
Ammonium Fluoride	(NH ₄) ₂ Cr ₂ O ₇ (NH ₄)F	Aqueous solution or solid	-	R 65	R 75	- 0	R	R	-	-
Ammonium Hexafluorosilicate	H ₈ F ₆ N ₂ Si	Sat. Solution		00	73	U	R	R	-	-
Ammonium Hydroxide	NH40H	Up to 30%	- R	R	R	0	R	R	_	-
Ammonium Metaphosphate	11114011	Aqueous solution or solid	-	R	R	-	R	R		_
Ammonium Nitrate	(NH ₄)NO ₃	Aqueous solution or solid	R	R	R	0	R	R		
Ammonium Oxalate	C ₂ H ₈ N ₂ O ₄	Aqueous solution or solid	- 11	-	-	-	R	R	_	_
Ammonium Persulfate	(NH ₄) ₂ S ₂ O ₈	Aqueous solution or solid	nr	25	25	0	R	R	_	_
Ammonium Phosphate	(NH ₄) ₃ PO ₄	Aqueous solution or solid	60	R	R	0	R	R	_	_
Ammonium Sulfate	(NH ₄) ₂ SO ₄	Aqueous solution or solid	60/L	R	R	0	R	R	-	_
Ammonium Sulfide	(NH ₄) ₂ S	Aqueous solution or solid	20	50	50	0	R	R	-	_
Ammonium Thiocyanate	NH ₄ SCN	Aqueous solution or solid	-	R	R	-	R	R	-	_
Amyl Acetate	C ₇ H ₁₄ O ₂	-	80/L	50	40	0	nr	L	-	_
Amyl Alcohol	C ₅ H ₁₂ O	-	60/L	R	R	0	L	L	-	-
Amyl Chloride	C ₅ H ₁₁ Cl	-	40/L	R	R	0	nr	20/L	-	-
Amyl phthalate	-	-	-	-	-	-	L	L	-	-
Amylic grease	-	-	R	-	-	-	-	-	-	-
Aniline	C ₆ H ₇ N	-	20/L	40	40	0	nr	L	-	-
Aniline Hydrochloride	C ₆ H ₈ CIN	Aqueous solution or solid	nr	25	25	-	20/L	-	-	-
Antimony pentachloride	SbCl ₅	Solid	nr	-	-	-	R	R	-	-
Aqua Regia	HNO ₃ +3HCl	-	nr	25	25	0	nr	nr	-	-
Aromatic Hydrocarbons	-	-	-	-	-	-	nr	nr	-	-
Arsenic Acid	H ₃ AsO ₄	Aqueous solution	-	R	R	0	R	R	-	-
Asphalt		_	L	R	R	-	L	L	-	-

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
В	D. D.						-			
Barium Bromide	BaBr ₂	-	-	- D	-	-	R	R	-	-
Barium Carbonate	BaCO ₃	- A	20	R	R	-	R	R	-	-
Barium Chloride	BaCl ₂	Aqueous solution or solid	R	R	R	-	R	R	-	-
Barium Hydroxide	Ba(OH) ₂	-	20	R	R	-	R	R	-	-
Barium Nitrate	Ba(NO ₃) ₂	Aqueous solution or solid	-	R	R	-	-	-	-	-
Barium Sulfate	BaSO ₄	=	20	R	R	-	R	R	-	-
Barium Sulfide	BaS	-	20	R	R	-	R	R	-	-
Battery Acid	H ₂ SO ₄	-	-	-	-	-	R	R	nr	L
Beer	-	-	L	R	90	0	R	R	-	-
Beet Sugar Liquors	-	=	-	R	90	0	-	-	-	-
Benzaldehyde	C ₇ H ₆ O	-	40/L	20	nr	0	20/L	L	-	-
Benzene	C ₆ H ₆	-	60/L	75	75	0	nr	L	-	-
Benzenesulfonic Acid	C ₆ H ₆ O ₃ S	Aqueous solution or solid	-	50	50	0	R	R	-	-
Benzoic Acid	C ₇ H ₆ O ₂	-	20/L	R	R	-	R	R	-	-
Benzoyl Chloride	C ₇ H ₅ CIO	-	-	75	75	-	L	L	-	-
Benzoyl Peroxide	C ₁₄ H ₁₀ O ₄	-	-	75	75	-	-	-	-	-
Benzyl Alcohol	C ₇ H ₈ O	-	20/L	R	R	0	L	R	-	-
Benzyl Chloride	C ₇ H ₇ Cl	-	20	R	R	0	nr	20/L	-	-
Benzyl Ether		-	-	40	25	-	-	-	-	-
Benzylamine	C ₇ H ₉ N	Aqueous solution or solid	-	25	nr	-	-	-	-	-
Bismuthyl carbonate	Bi ₂ O ₂ (CO ₃)	Sat. Solution	_	_	-	-	R	R	_	-
Bitumen	-	-	_	_	_	_	L	R	_	_
Black Liquor			_	80	80			- 11		
Bleach	NaCIO		_	-	-	_			_	_
		-		R	R	0	D	D	-	-
Borax	Na ₂ B ₄ O ₇ ·1 ₀ H ₂ O	-	R				R	R	- 00.0	-
Boric Acid	H ₃ BO ₃	3% in water	L	R	R	0	R	R	20/L	L
Boric Acid	H ₃ BO ₃	-	L	R	R	0	R	R	-	-
Boron Trifluoride	BF ₃	-	-	25	25	-	20/L	20/L	-	-
Brake Fluid	-	-	-	-	-	-	20/L	20/L	nr	nr
Brine	-	=	20	R	R	0	R	R	-	-
Brine, acid	-	-	-	R	R	-	-	-	-	-
Brine, chlorinated Acid	-	-	-	95	R	-	-	-	-	-
Bromic Acid	HBrO ₃	Aqueous solution	-	95	R	-	nr	nr	-	-
Bromine Gas (dry)	Br ₂	-	nr	65	50	0	nr	nr	-	-
Bromine Water	-	-	L	R	R	0	nr	nr	-	-
Bromine, liquid	Br ₂	-	nr	65	50	-	nr	nr	-	-
Bromobenzene	C ₆ H ₅ Br	-	-	65	65	0	-	-	-	-
Bromoform	CHBr ₃	-	-	65	65	0	nr	nr	-	-
Bromotoluene	C ₇ H ₇ Br	-	-	80	65	-	-	-	-	-
Butadiene	C ₄ H ₆	Ē	20/L	R	R	0	-	-	-	-
Butane, Gas	C ₄ H ₁₀	-	R	R	R	0	-	R	-	-
Butanediol	C ₄ H ₁₀ O ₂	Aqueous solution or solid	20	R	R	0	R	R	_	-
Butanol	C ₄ H ₁₀ O	-	40/L	-	-	-	L	R	_	-
Butanone	C ₄ H ₈ O	_	60/L	-	_	_	20	L	_	_
Butyl Acetate			80/L	25		L	L	L		
Butyl Acrylate	C ₆ H ₁₂ O ₂ C ₇ H ₁₂ O ₂	=	00/L -	50	nr 40	_ _	L	L	_	_
Butyl Bromide	C ₄ H ₉ Br	-			40 R	_			-	_
		-	-	R		0	-	- 20	-	-
Butyl Chloride	C ₄ H ₉ Cl	-	-	R	R	0	20	20	-	-
Butyl Ether	-	-	-	40	nr	0		-	-	-
Butyl Mercaptan	-	-	-	R	R	-	-	-	-	-
Butyl Stearate	-	-	-	40	40	-	-	-	-	-
Butylamine	-	Aqueous solution or solid	nr	nr	nr	-	-	-	-	-
Butylene	C ₄ H ₈	-	-	R	R	0	-	-	-	-
Butylene Glycol	-	-	-	R	R	-	R	R	-	-
Butylphenol	-	=	nr	R	R	-	20/L	R	-	-
Butyraldehyde	C ₄ H ₈ O	-	-	65	50	0	-	L	-	-
Butyric Acid	C ₄ H ₈ O ₂	<u>-</u>	40/L	R	R	0	L	L	-	-
C										
Calcium Acetate	Ca(CH ₃ COO) ₂	Aqueous solution or solid	-	R	R	-	-	-	-	-
Calcium Arsenate	Ca ₃ As ₂ O ₈	Concentrated or paste	60	R	R	-	R	R	-	-
Calcium Benzoate	Ca(C ₇ H ₅ O ₂) ₂	-	-	-	-	-	R	R	-	-
Calcium Bisulfate	-	Aqueous solution or solid	-	R	R	0	-	-	-	-
Calcium Bisulfite	Ca(HSO ₃) ₂	Aqueous solution or solid	20	95	R	-	R	R	-	-
Calcium Bromate	Ca(BrO ₃) ₂	-	-	-	-	-	R	R	-	-
Calcium Bromide	CaBr ₂	Aqueous solution or solid	-	R	R	_	R	R	_	_
Calcium Carbonate	CaCO ₃	400000 001011011 01 00110	20	R	R	_	R	R	_	_
Calcium Chlorate	Ca(ClO ₃) ₂	Aqueous solution or solid		R	R		R	R		
			- D			0			-	-
Calcium Chloride	CaCl ₂	Aqueous solution or solid	R	R	R	0	R	R	-	-

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
Calcium Chromate	CaCrO ₄	-	-	-	-	-	R	R	-	-
Calcium Cyanide	Ca(CN) ₂	-	-	-	-	-	R	R	-	-
Calcium Hydrosulfide	-	-	-	-	-	-	R	R	-	-
Calcium Hydroxide	Ca(OH) ₂	-	20	R	R	0	R	R	-	-
Calcium Hydroxide Saturated	Ca(OH) ₂	-	20	R	R	0	R	R	L	L
Calcium Hypochlorite	Ca(CIO) ₂	Aqueous solution or solid	nr	95	R	0	R	R	-	-
Calcium Nitrate	Ca(NO ₃) ₂	Aqueous solution or solid	60	R	R	-	R	R	-	-
Calcium Oxide	Ca0	-	-	R	R	-	R	R	-	-
Calcium Perchlorate	Ca(CIO ₄) ₂	=	-	-	-	-	20	R	-	-
Calcium Phosphate	Ca ₃ (PO ₄) ₂	≘	-	R	R	-	R	R	-	-
Calcium Sulfate	CaSO ₄	=	nr	R	R	-	R	R	-	-
Calcium Sulfide	CaS	≘	-	-	-	-	-	L	-	-
Camphor Oil	C ₁₀ H ₁₆ O	=	-	-	-	-	nr	L	-	-
Caprylic Acid	C ₈ H ₁₆ O ₂	=	-	80	80	-	-	-	-	-
Carbon Dioxide	CO ₂	-	R	R	R	0	-	R	-	-
Carbon Disulfide	CS ₂	-	40/L	25	25	-	nr	20/L	-	-
Carbon Monoxide	CO	-	-	R	R	-	R	R	-	-
Carbon Tetrachloride	CCI ₄	-	nr	R	R	0	nr	20/L	-	-
Carbonic Acid	H ₂ CO ₃	-	20	R	R	0	R	R	-	-
Casein	-	=	R	R	R	-	-	-	-	-
Castor Oil	-	=	R	R	R	-	R	R	-	-
Chloral Hydrate	C ₂ H ₃ Cl ₃ O ₂	-	-	25	25	-	L	Ĺ	-	-
Chloric Acid	HCIO ₃	up to 10 % in water	nr	-	-	-	R	R	-	-
Chloride	CI-	5% in CCI4	20/L	95	75	0	-	-	-	-
Chlorinated phenol	-	-	nr	65	65	-	-	-	-	-
Chlorine Dioxide	CIO ₂	-	20/L	65	65	0	-	_	-	_
Chlorine Gas	Cl ₂	_	nr	95	75	0	nr	20/L	-	_
Chlorine Liquid	Cl ₂	_	nr	95	80	0	nr	20/L	_	_
Chlorine Water	OIZ	_	L	R	R	0	L	R	_	_
Chloroacetic Acid	C ₂ H ₃ ClO ₂	Aqueous solution or solid	nr	nr	nr	0	R	R		_
Chloroacetyl Chloride	C ₂ H ₂ Cl ₂ O	Aqueous solution of solid	-	50	50	-	-	-	_	_
Chlorobenzene	C ₆ H ₅ Cl		nr	75	70	0	nr	nr	-	
Chlorobenzene-sulphonic Acid	C ₆ H ₅ O ₃ SCI	Aqueous solution or solid	-	95	R	-	-	-		
Chlorobenzyl Chloride	0611503301	Aqueous solution of solid	-	50	50	-	-	-	-	-
Chloroethanol	C-II-CIO	-	-	-	-	-			-	-
Chloroform	C ₂ H ₅ ClO	-	40/L	50		0	R	R	-	-
	CHCl ₃ C ₆ H ₁₃ OCl	-	40/L	75	50 75	-	nr -	nr -	-	-
Chlorohexanol	U6П13UUI	=							-	-
Chlorohydrin	-	-	nr	50	50	-	-	-	-	-
Chloropicrin	CCl ₃ NO ₂	-	-	65	65	-	-	20/L	-	-
Chloropropene Oblava vilala pria Apid	C ₃ H ₅ Cl	-	-	-	-	-	nr	20/L	-	-
Chlorosulphonic Acid	CIHSO ₃	-	nr	nr	25	0	nr	nr	-	-
Chlorotrimethylsilane	C ₃ H ₉ SiCl	-	-	50	50	-	-	-	-	-
Chrome Alum		Aqueous solution or solid	20/L	95	R	-	R	R	-	-
Chromic Acid	H ₂ CrO ₄	50% in water	nr	50	65	0	20/L	L	-	-
Chromic Acid	H ₂ CrO ₄	Up to 40% in water	nr	80	80	0	20/L	L	-	-
Chromyl Chloride	CrO ₂ Cl ₂	-	-	50	50	-	-	-	-	-
Cider	-	-	20	R	R	0	R	R	-	-
Citric Acid	C ₆ H ₈ O ₇	3% in water	L	R	R	0	R	R	nr	L
Citric Acid	C ₆ H ₈ O ₇	Aqueous solution or solid	60/L	R	R	0	R	R	-	-
Coal Gas	-	-	60/L	R	R	-	L	L	-	-
Coconut Oil		=	R	R	R	0	L	L	-	-
Copper Acetate	Cu(CH ₃ COO) ₂	Aqueous solution or solid	-	R	R	-	-	-	-	-
Copper Basic Carbonate	CuCO ₃	=	-	R	R	-	-	-	-	-
Copper Chloride	CuCl ₂	Aqueous solution or solid	nr	R	R	-	R	R	-	-
Copper Cyanide	CuCN	-	nr	R	R	-	R	R	-	-
Copper Fluoride	CuF	=	20/L	R	R	-	R	R	-	-
Copper Nitrate	Cu(NO ₃) ₂	Aqueous solution or solid	nr	R	R	-	R	R	-	-
Copper Sulfate	CuSO ₄	Aqueous solution or solid	R	R	R	0	R	R	-	-
Corn Oil	-	-	R	R	R	0	R	R	-	-
Cottonseed Oil	-	-	R	R	R	0	L	R	-	-
Cresol mixture	-	-	nr	65	65	0	20/L	20/L	-	-
Cresylic Acid	CH ₃ C ₉ H ₄ OH	-	nr	65	65	-	-	20/L	-	-
Crotonaldehyde	C ₄ H ₆ O	-	-	50	40	-	20/L	L	-	-
Crude Oil	-	-	80/L	R	R	-	nr	nr	-	-
Cryolite	Na ₃ AIF ₆	=	-	R	R	-	-	-	-	-
Cuprous Chloride	CuCl	-	-	R	R	-	-	-	-	-
Cyclohexane	C ₆ H ₁₂	-	80/L	R	R	0	nr	nr	-	-
Cyclohexanol	C ₆ H ₁₂ O	-	40/L	65	65	0	20/L	S	-	-
. ,	50.1120		40/L	25	25	0	nr	L		

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
D										
Decahydronaphthalene	-	-	20	-	-	-	20/L	L	-	-
Decane	-	-	-	R	R	-	nr	20/L	-	-
Detergents, synthetic	$C_{15}H_{10}N_2O_2$	-	20	-	-	-	R	R	-	-
Dextrin	$(C_6H_{10}O_5)n$	Aqueous solution or solid	-	R	R	0	R	R	-	-
Dextrose	$C_6H_{12}O_6$	Solution not saturated	-	R	R	-	R	R	-	-
Diacetone Alcohol	$C_6H_{12}O_2$	-	60/L	25	nr	0	-	-	-	-
Dibromobenzene	$C_6H_4Br_2$	-	-	95	R	-	-	-	-	-
Dibromopropane	-	-	-	95	R	-	-	-	-	-
Dibutyl Ether	C ₈ H ₁₈ O	-	-	-	-	-	nr	20/L	-	-
Dibutyl Phtalate	$C_{16}H_{22}O_4$	-	20	nr	nr	0	L	L	-	-
Dibutyl Sebacate	$C_{18}H_{34}O_4$	-	-	nr	nr	-	20/L	L	-	-
Dibutylamine	$C_8H_{19}N$	Aqueous solution or liquid	-	20	nr	-	nr	20/L	-	-
Dichloroacetic Acid	$C_2H_2CI_2O_2$	Aqueous solution or liquid	-	50	50	-	20	L	-	-
Dichlorobenzene	C ₆ H ₄ Cl ₂	-	-	65	65	0	nr	nr	-	-
Dichlorodimethylsilane	C ₂ H ₆ Cl ₂ Si	-	-	50	50	-	-	-	-	-
Dichloroethylene	C ₂ H ₂ Cl ₂	-	20	R	R	0	nr	nr	-	-
Dichloropropionic Acid	C ₃ H ₃ Cl ₂ O ₂	-	-	50	50	-	-	-	-	-
Dichloropropylene	C ₃ H ₄ Cl ₂	-	-	-	-	-	nr	nr	-	-
Dichlorotoluene	C ₇ H ₆ Cl ₂	-	-	65	65	-	-	-	-	-
Diesel Fuels	-	-	60	R	R	0	L/20	L	-	-
Diethanolamine	C ₄ H ₁₁ NO ₂	Aqueous solution or liquid	60	nr	nr	0	20	20	-	-
Diethyl Ether	C ₄ H ₁₀ O	-	20	-	-	-	nr	20/L	-	-
Diethyl Malonate	C7H ₁₂ O ₄	-	-	nr	nr	-	-		_	_
Diethylamine	C ₄ H ₁₁ N	Aqueous solution or liquid	-	25	nr	0	-	_	_	_
Diethylene glycol	C ₄ H ₁₀ O ₃	-	60	-	-	-	R	R	_	_
Diethylenetriamine	C ₄ H ₁₃ N ₃	Aqueous solution or liquid	-	50	40	_	-	-	_	_
Diglycolic Acid	C ₄ H ₆ O ₅	-	_	25	25	_	R	R	_	_
Diisobutyl Ketone	C ₉ H ₁₈ O	_	_	50	25	_	Ľ	Ľ	_	
Diisobutylene	C ₈ H ₁₆	_	_	R	R	_	-	-	_	
Diisopropyl Ketone	C ₇ H ₁₄ O	-	_	20	nr	_	_	_	_	_
Dimethyl Acetamide	C ₄ H ₉ NO	_	_	nr	nr	0	-	_	_	
Dimethyl Formamide	C ₃ H ₇ NO	_	R/L	nr	nr	0	L	R	-	
Dimethyl Phthalate	C ₁₀ H ₁₀ O ₄	_	- n/L	25	nr	0	_ _	n -	-	_
Dimethyl Sulfoxide	C ₂ H ₆ OS	-	40/L	nr	nr	0	20	R	-	_
Dimethyl Sulfate	C ₂ H ₆ O ₄ S		40/L	25	25		-	n -	-	_
Dimethyl-1,5-hexadiene	C ₂ Π ₆ U ₄ S C ₇ H ₁₂	-				-			-	-
Dimethyl-4-heptanol		-	-	R	R R		-	-	-	-
	C ₉ H ₁₈ O (CH ₃) ₂ NH	Aguagus colution or gas	-	95		-	-	-	-	_
Dimethylamine Dimethylamiliae		Aqueous solution or gas	-	25	nr	0	nr	-	-	_
Dimethylaniline	C ₈ H ₁₁ N	-	-	25	25	-	-	-	-	-
Dioctyl Phthalate	C ₂₄ H ₃₈ O ₄	-	80/L	25	25	-	20/L	20	-	-
Dioxane	C ₄ H ₈ O ₂	-	R	nr	nr	0	-	R	-	-
Dioxolane	C ₃ H ₆ O ₂	-	-	nr	nr	-	-	-	-	-
Dipentene	C ₁₀ H ₁₆	-	-	-	-	-	nr	nr	-	-
Dipropylene Glycol Methyl Ether	-	-	-	25	nr	-	-	-	-	-
Disodium Phosphate	Na ₂ HPO ₄	Aqueous solution or solid	-	95	R	-	R	R	-	-
Disodium Sulfate	Na ₂ HSO ₄	-	-	-	-	-	R	R	-	-
Divinyl Benzene	C ₁₀ H ₁₀	-	-	50	50	-	-	-	-	-
E Epichlorohydrin	C*H=CIO			40	p.,		D	D		
	C ₃ H ₅ ClO	Aguague solution or salid	-	40	nr	-	R	R	-	-
Epsom Salts	MgSO ₄	Aqueous solution or solid	-	R	R	-	-	-	-	-
Ethanethiol Ethanol	C ₂ H ₆ S	-	- 40/1	25	25	0	-	-	-	-
	C ₂ H ₆ O	A accessor and others are the cital	40/L	-	-	-	L	L	nr	L
Ethanolamine	C ₂ H ₇ NO	Aqueous solution or liquid	-	nr	nr	0	20	20	-	-
Ethyl Acetate	C ₄ H ₈ O ₂	-	60	nr	nr	0	20/L	20/L	nr	nr
Ethyl Acetoacetate	C ₆ H ₁₀ O ₃	-	-	25	25	-	-	-	-	-
Ethyl Acrylate	C ₅ H ₈ O ₂	Amuseus sal P. P. 11. 155	-	25	25	-	nr	20/L	-	-
Ethyl Alcohol	C ₂ H ₆ O	Aqueous solution or liquid, <10%	30/L	R	R	0	R	R	-	-
Ethyl Benzene	C ₈ H ₁₀	-	-	50	50	0	nr	nr	-	-
Ethyl Chloride	C ₂ H ₅ CI	-	20	R	R	0	nr	nr	-	-
Ethyl Chloroacetate	C ₄ H ₇ ClO ₂	-	-	25	25	-	-	-	-	-
Ethyl Chloroformate	C ₃ H ₅ ClO ₂	-	-	50	50	-	-	-	-	-
Ethyl Cyanoacetate	-	-	-	25	25	0	-	-	-	-
Ethyl Ether	$C_4H_{10}O$	-	30/L	50	40	0	nr	nr	-	-
Ethyl Formate	$C_3H_6O_2$	-	-	25	25	0	-	-	-	-
Ethyl mercaptan	C ₂ H ₆ S	-	-	-	-	-	nr	nr	-	-
				_			00	00		_
Ethyl-1-hexanol Ethylene Chlorohydrin	- C ₂ H ₅ ClO	- Aqueous solution or liquid	-	R	R	-	20	20	-	-

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
Ethylene Glycol	C ₂ H ₆ O ₂	Aqueous solution or liquid	60/L	R	R	0	R	R	nr	L
Ethylene Oxide liquid	C ₂ H ₄ O	=	40	R	R	0	-	R	-	-
Ethylenediamine	C ₂ H ₈ N ₂	Aqueous solution or liquid	-	R	R	0	L	R	-	-
F Fatty Acids esters	_		R	R	R	_	L	L		
Fatty Acids, Sulfonates	_	<u>-</u>	-	80	80	_	20	20	_	-
Ferric Chloride	FeCl ₃	Aqueous solution or solid	20	R	R	0	R	R	_	_
Ferric Hydroxide	Fe(OH) ₂	-	-	R	R	-	- "	- "	_	-
Ferric Nitrate	Fe(NO ₃) ₃	Aqueous solution or solid	_	R	R	_	R	R	-	_
Ferric Sulfide	C ₂ H ₄ O	-	-	R	R	-	-	-	-	-
Ferric Sulfate	Fe ₂ (SO ₄) ₃	=	20	R	R	0	R	R	-	-
Ferrous Chloride	FeCl ₂	Aqueous solution or solid	nr	R	R	0	R	R	-	-
Ferrous Hydroxide	Fe(OH) ₂	-	-	R	R	-	-	-	-	-
Ferrous Nitrate	Fe(NO ₃) ₂	Aqueous solution or solid	-	R	R	-	-	-	-	-
Ferrous Sulfate	FeSO ₂	=	nr	R	R	0	R	R	-	-
Fluorine gas	F ₂	-	nr	25	25	L	nr	nr	-	-
Fluoroboric Acid		Aqueous solution	-	R	R	0	L	L	-	-
Fluorosilic Acid	H ₂ SiF ₆	Concentrated	nr	R	R	0	L	L	-	-
Formaldehyde	CH ₂ O	37% in water	40/L	50	50	0	R	R	-	-
Formic Acid	CH ₂ O ₂	3% in water	nr	R	R	0	R	R	nr	L
Formic Acid	CH ₂ O ₂	Aqueous solution or liquid	nr	R	R	0	R	R	-	-
Fructose	C ₆ H ₁₂ O ₆	Aqueous solution or solid	R	R	R	0	R	R	-	-
Fruit Juice, Pulp	-	-	R	R	R	0	R	R	-	-
Fuel Blend Diesel/Biodiesel	-	-	60/L	60	60	-	-	-	-	-
Fuel C	=	=	-	60	60	-	-	-	-	-
Fuel CE 10	-	=	-	60	60	-	-	-	-	-
Fuel CM15	-	=	-	60	60	-	-	-	-	-
Fuel E85	-	=	-	60	60	-	-	-	-	-
Fuel Oil	-	=	60/L	R	R	0	20/L	L	-	-
Fuel Rapeseed Oil Biodisel 100%	=	=	-	60	60	-	-	-	-	-
Fumaric Acid	C ₄ H ₄ O ₄	-	-	75	65	-	-	-	-	-
Furan	C ₄ H ₄ O	-	-	nr	nr	-	-	-	-	-
Furfural	C ₅ H ₄ O ₂	=	60/L	25	25	0	nr	nr	-	-
Furfuryl Alcohol G	C ₅ H ₆ O ₂	Aqueous solution or liquid	40	40	40	-	20/L	L	-	-
Gallic Acid	C ₇ H ₆ O ₅	_	20	25	25	0	R	R	_	
Gas, natural	-	<u>_</u>	R	R	R	0	20	20	_	_
Gasoline, leaded	_	_	-	R	R	0	-	_	_	_
Gasoline, sour	_	_	_	R	R	-	20/L	L	-	-
Gasoline, unleaded	_	_	L	R	R	0	-	-	_	-
Gelatin	_	_	-	R	R	0	R	R	-	_
Gin	_	_	-	R	R	0	20	20	_	-
Glucose	C ₆ H ₁₂ O ₆	Aqueous solution or solid	R	R	R	0	R	R	-	-
Glue	-	-	-	R	R	-	R	R	-	-
Glutamic Acid	C ₅ H ₉ NO ₄	-	_	95	R	-	-	-	-	-
Glycerine	C ₃ H ₈ O ₃	Aqueous solution or liquid	60/L	R	R	0	R	R	-	-
Glycine	C ₂ H ₅ NO ₂	Aqueous solution or solid	-	25	25	-	R	R	-	-
Glycolic Acid	C ₂ H ₄ O ₃	-	-	25	25	-	L	R	-	-
Н										
Heptane	C ₇ H ₁₆	=	R	R	R	0	nr	20/L	-	-
Hexachloro-1,3-Butadiene	C4Cl ₆	-	-	50	50	-	-	-	-	-
Hexachlorobenzene	C ₆ Cl ₆	=	-	-	-	-	R	L	-	-
Hexachlorophene	C ₁₃ H ₆ Cl ₆ O ₂	-	-	-	-	-	nr	L	-	-
Hexamethylenediamine	C ₆ H ₁₆ N ₂	=	-	nr	nr	-	-	-	-	-
			-	nr	nr	-	-	-	-	-
Hexamethylphosphotriamide	6.11	-						L	-	-
Hexamethylphosphotriamide Hexane	C ₆ H ₁₄	-	60/L	R	R	0	L			
Hexamethylphosphotriamide Hexane Hexyl Alcohol	C ₆ H ₁₄ C ₆ H ₁₄ O	- - -	-	R 80	80	-	-	-	-	-
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid	C ₆ H ₁₄ O	- - - -	- L	80	80	-	-	-	nr	nr
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine		Aqueous solution or liquid	L L	80 - 95	80 - R		-	- - -		
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Dichloridrate	C ₆ H ₁₄ O	Aqueous solution or solid	- L -	80 - 95 25	80 - R 25	-	- - -	- - -	nr	
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Hydrazine Hydrazine-Hydrate	C ₆ H ₁₄ O N ₂ H ₄	Aqueous solution or solid Aqueous solution or liquid	- L -	80 - 95 25 50	80 - R 25 50	-	- - - R	- - -	nr	
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Dichloridrate Hydrazine-Hydrate Hydrazine-Hydrate Hydriodic Acid	C ₆ H ₁₄ O N ₂ H ₄ HI	Aqueous solution or solid Aqueous solution or liquid Aqueous solution	- L - -	80 - 95 25 50 R	80 - R 25 50 R	- - 0 - -	- - - R -	- - - - R	nr - - -	
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Dichloridrate Hydrazine-Hydrate Hydrazine-Hydrate Hydriodic Acid Hydrobromic Acid	C ₆ H ₁₄ O N ₂ H ₄ HI HBr	Aqueous solution or solid Aqueous solution or liquid Aqueous solution up to 50 % in water	- L - - - - nr	80 - 95 25 50 R	80 - R 25 50 R	- 0 - - -	- - - R - R	- - - R - R	nr - - -	nr - - - -
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Dichloridrate Hydrazine-Hydrate Hydriodic Acid Hydrobromic Acid	C ₆ H ₁₄ O N ₂ H ₄ HI HBr HCI	Aqueous solution or solid Aqueous solution or liquid Aqueous solution up to 50 % in water 3% in water	- L - - - - nr	80 - 95 25 50 R R	80 - R 25 50 R R	- 0 - - - 0	- - - R - R	- - - R - R	nr - - - - - nr	nr - - - - L
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Dichloridrate Hydrazine-Hydrate Hydroic Acid Hydrobromic Acid Hydrochloric Acid	C ₆ H ₁₄ O N ₂ H ₄ HI HBr HCI HCI	Aqueous solution or solid Aqueous solution or liquid Aqueous solution up to 50 % in water 3% in water Up to "concentrated"	- L - - - nr - nr	80 - 95 25 50 R R R R	80 - R 25 50 R R R	- 0 - - - 0 0	- - - R - R R R	- - - R - R R	nr - - -	nr - - -
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Dichloridrate Hydrazine-Hydrate Hydroidic Acid Hydrobromic Acid Hydrochloric Acid Hydrochloric Acid Hydrochloric Acid	C ₆ H ₁₄ O N ₂ H ₄ HI HBr HCI HCI HCN	Aqueous solution or solid Aqueous solution or liquid Aqueous solution up to 50 % in water 3% in water	- L - - - - nr - nr	80 - 95 25 50 R R R R	80 - R 25 50 R R R R	- 0 - - - 0 0	- - - R - R R R	- - R - R R R R	nr - - - - - nr -	nr - - - - L
Hexamethylphosphotriamide Hexane Hexyl Alcohol Hydraulic fluid Hydrazine Hydrazine Dichloridrate Hydrazine-Hydrate Hydroic Acid Hydrobromic Acid Hydrochloric Acid	C ₆ H ₁₄ O N ₂ H ₄ HI HBr HCI HCI	Aqueous solution or solid Aqueous solution or liquid Aqueous solution up to 50 % in water 3% in water Up to "concentrated"	- L - - - nr - nr	80 - 95 25 50 R R R R	80 - R 25 50 R R R	- 0 - - - 0 0	- - - R - R R R	- - - R - R R	nr - - - - - nr	nr - - - - L

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
Hydrogen Peroxide	H ₂ O ₂	90% in water	nr	20	20	0	20/L	20/L	-	-
Hydrogen Sulfide	H ₂ S	Aqueous solution	60/L	R	R	0	R	R	-	-
Hydroquinone	C ₆ H ₆ O ₂	-	-	R	R	0	R	-	-	-
Hydroxylamine	H ₃ NO	up to 12%	-	-	-	-	R	R	-	-
Hypochlorous Acid	HCI0	Aqueous solution	-	20	20	-	20/L	20/L	-	-
lodine	l ₂	10% in Non-Aqueous solvent	-	65	65	0	nr	nr	-	_
lodine, gas	l ₂	-	_	65	65	0	-	-	_	_
lodoform	CHI ₃	_	-	95	R	-	_	-	-	_
Isopentane	C ₅ H ₁₂	_	_	-	-	-	nr	nr	-	_
Isoamyl Ether	C ₁₀ H ₂₂ O	_	_	R	50	_	_	-	-	_
Isobutyl Alcohol	C ₄ H ₁₀ O	_	_	R	R	0	_	-	-	
Isoctane pure	C ₈ H ₁₈	-	-	R	R	0	20/L	L	-	_
Isophorone	C ₉ H ₁₄ O	_	_	80	50	-	-	-	-	-
Isopropyl Alcohol	C ₃ H ₈ O	Aqueous solution or liquid	30/L	60	60	0	_	-	-	_
Isopropyl Amine	C ₃ H ₉ N		-	-	-	_	nr	nr	_	_
Isopropyl Benzene	C ₉ H ₁₂	-	_	40	40	0	-	-	_	_
Isopropyl Chloride	C ₃ H ₇ Cl	-	-	40	40	-	_	-	_	_
Isopropyl Ether	C ₆ H ₁₄ O	_	-	50	50	0	20/L	20/L	-	_
J	0611140	_		30	30	U	20/L	20/L		
Jet Fuel (JP4, JP5)	-	-	-	95	R	0	-	-	-	-
K Kerosene			60/L	R	R	0	nr	nr		
Neroserie		-	00/L	II.	II.	U	111	111		
Lactic Acid	C ₃ H ₆ O ₃	3% in water	R	50	50	0	R	R	nr	L
Lactic Acid	C ₃ H ₆ O ₃	Aqueous solution or pure	80/L	50	50	0	R	R	-	-
Lanolin	-	- '	60	R	R	-	R	R	-	-
Lard Oil	-	-	R	R	R	-	-	-	-	-
Lauric Acid	C ₁₂ H ₂₄ O ₂	3% in water	-	R	R	0	-	-	nr	L
Lauric Acid	C ₁₂ H ₂₄ O ₂	-	-	R	R	0	-	-	-	-
Lauryl Chloride	C ₁₂ H ₂₅ CI	-	-	R	R	-	-	-	-	-
Lauryl Mercaptan	-	-	-	95	R	-	-	-	-	-
Lauryl Sulfate	-	-	-	R	R	-	-	-	-	-
Lead Acetate	Pb(C ₂ H ₃ O ₂) ₂	Aqueous solution or solid	-	R	R	0	R	R	-	-
Lead Chloride	PbCl ₂	-	-	R	R	-	-	-	-	-
Lead Nitrate	Pb(NO ₃) ₂	Aqueous solution or solid	-	R	R	-	-	-	-	-
Lead Sulfate	PbSO ₄	-	-	R	R	-	-	-	-	-
Lemon Oil		-	R	R	R	0	-	-	-	-
Linoleic Acid	C ₁₈ H ₃₂ O ₂	-	-	R	R	-	-	-	-	-
Linseed Oil	-	-	R	R	R	0	L	R	-	-
Lithium Bromide	LiBr	Aqueous solution or solid	-	R	R	-	R	R	-	-
Lithium Chloride	LiCl	Aqueous solution or solid	-	R	R	nr	-	-	-	-
Lubricating Oil	-	-	R	R	R	0	R	R	-	-
Lysol	-	-	-	-	-	-	nr	20/L	-	-
M Managarina Orahamata	14::00			n	n		n	D		
Magnesium Carbonate	MgCO ₃	Aguanua calution or calid COO/	- D	R	R	-	R	R	-	-
Magnesium Chloride Magnesium Citrate	MgCl ₂	Aqueous solution or solid, 50%	R -	R	R	0	R R	R R	-	-
	C ₆ H ₆ MgO ₇	-		R	R	-			-	-
Magnesium Hydroxide Magnesium Nitrate	Mg(OH) ₂	Aqueous solution or solid	20	R	R	0	R	R	-	-
ů .	Mg(NO ₃) ₂		- D	R	R	-	R	R	-	-
Magnesium Salts	Maco	Cold sat. Aqueous solution or solid	R	R	R	-	R	R	-	-
Magnesium Sulfate Maleic Acid	MgSO ₄		-	R	R R	-	R -	R	-	-
Maleic Acid Maleic Anhydride	C ₄ H ₄ O ₄ C ₄ H ₂ O ₃	Aqueous solution or solid	-	R 25		0	-	-	-	-
			-	25 R	nr R		-	-	_	_
		Validable collition or colle			R	_	-	-	-	_
Malic Acid	C ₄ H ₄ O ₄	Aqueous solution or solid	_	P				-	-	
Malic Acid Manganese Sulfate	C ₄ H ₄ O ₄ MnSO ₄	Aqueous solution or solid Aqueous solution or solid	-	R		0		R	_	
Malic Acid Manganese Sulfate Mercuric Chloride	C ₄ H ₄ O ₄ MnSO ₄ HgCl ₂	· ·	-	R	R	0	R	R	-	-
Malic Acid Manganese Sulfate Mercuric Chloride Mercuric Cyanide	C ₄ H ₄ O ₄ MnSO ₄ HgCl ₂ Hg(CN) ₂	Aqueous solution or solid	- -	R R	R R	-	R R	R	-	-
Malic Acid Manganese Sulfate Mercuric Chloride Mercuric Cyanide Mercuric Nitrate	C ₄ H ₄ O ₄ MnSO ₄ HgCl ₂ Hg(CN) ₂ Hg(NO ₃) ₂	· ·	- - -	R R R	R R R	-	R R R	R R	- - -	-
Malic Acid Manganese Sulfate Mercuric Chloride Mercuric Cyanide Mercuric Nitrate Mercury	C ₄ H ₄ O ₄ MnSO ₄ HgCl ₂ Hg(CN) ₂ Hg(NO ₃) ₂ Hg	Aqueous solution or solid	- - - R	R R R	R R R	- - 0	R R R	R R R	- - -	
Malic Acid Manganese Sulfate Mercuric Chloride Mercuric Cyanide Mercuric Nitrate Mercury Methacrylic Acid	$\begin{array}{c} C_4H_4O_4\\ MnSO_4\\ HgCl_2\\ Hg(CN)_2\\ Hg(NO_3)_2\\ Hg\\ C_4H_6O_2 \end{array}$	Aqueous solution or solid	- - - R -	R R R R 50	R R R R 50	- 0 -	R R R R	R R R	- - - -	- - - -
Malic Acid Manganese Sulfate Mercuric Chloride Mercuric Cyanide Mercuric Nitrate Mercury Methacrylic Acid Methane	C ₄ H ₄ O ₄ MnSO ₄ HgCl ₂ Hg(CN) ₂ Hg(NO ₃) ₂ Hg C ₄ H ₆ O ₂ CH ₄	Aqueous solution or solid - - Aqueous solution or solid - - - - - -	- - R - R	R R R R 50	R R R R 50	- - 0	R R R R L	R R R R	-	-
Malic Acid Manganese Sulfate Mercuric Chloride Mercuric Cyanide Mercuric Nitrate Mercury Methacrylic Acid Methane Methanesulfonic Acid	C ₄ H ₄ O ₄ MnSO ₄ HgCl ₂ Hg(CN) ₂ Hg(NO ₃) ₂ Hg C ₄ H ₆ O ₂ CH ₄ CH ₄ O ₃ S	Aqueous solution or solid Aqueous solution or solid	- - R - R	R R R R 50 R	R R R R 50 R	- 0 - 0	R R R R L	R R R R -	- - - - -	
Malic Acid Manganese Sulfate Mercuric Chloride Mercuric Cyanide Mercuric Nitrate Mercury Methacrylic Acid Methane	C ₄ H ₄ O ₄ MnSO ₄ HgCl ₂ Hg(CN) ₂ Hg(NO ₃) ₂ Hg C ₄ H ₆ O ₂ CH ₄	Aqueous solution or solid - - Aqueous solution or solid - - - - - -	- - R - R	R R R R 50	R R R R 50	- 0 -	R R R R L	R R R R	- - - - - - nr	- - - - - - 20/L

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
Methyl Acrylate	C ₄ H ₆ O ₂		_	40	25	_	L	R	_	_
Methyl Alcohol	CH ₄ O	6% in water	20/L	R	R	-	Ĺ	R	_	-
Methyl Bromide	CH ₃ Br	o /o iii watoi	20	R	R	_	nr	nr	_	_
Methyl Chloride		-	20	R	R	-			_	_
	CH ₃ CI	-					nr	nr	-	_
Methyl Chloroacetate	C ₃ H ₅ ClO ₂	-	-	25	nr	-	-	-	-	-
Methyl Chloroform	C ₂ H ₃ Cl ₃	-	-	50	50	-	-	-	-	-
Methyl Chloromethyl Ether	C ₂ H ₅ CIO	-	-	25	nr	-	-	-	-	-
Methyl Ethyl Ketone	C ₄ H ₈ O	-	60/L	nr	nr	0	20/L	L	-	-
Methyl Isobutyl Ketone	C ₆ H ₁₂ O	-	60/L	nr	nr	0	20	20	-	-
Methyl Methacrylate	C ₅ H ₈ O ₂	-	-	50	40	0	-	-	-	-
Methyl Salicylate	C ₈ H ₈ O ₃	-	-	65	65	0	-	-	-	-
Methyl Sulfate	CH ₄ SO ₄	-	60/L	-	ok	_	-		_	_
Methyl Sulphuric Acid	-	Aqueous solution or liquid	-	50	50	_	R	R	_	_
Methylamine	CH ₅ N	Aquoous solution of liquid	-	nr	nr		-	"		
		-				-		_	-	_
Methylene Bromide	CH ₂ Br ₂	-	-	80	80	-	-		-	-
Methylene Chloride	CH ₂ Cl ₂	-	nr	50	25	0	nr	nr	-	-
Methylene lodide	CH ₂ I ₂	=	-	95	R	-	-	-	-	-
Methyltrichlorosilane	CH ₃ Cl ₃ Si	-	-	65	65	-	-	-	-	-
Milk	-	-	R	R	R	0	R	R	-	-
Mineral Oil	-	-	R	R	R	0	20/L	L	-	_
Molasses	-	_	-	80	80	0	R	R	-	_
Morpholine	C ₄ H ₉ NO	Aqueous solution or liquid	-	25	25	-	20	R	_	_
Motor Oil	O4i igiVO	Aquoous solution of liquid	60	R	R	_	L	R		
VIOLOI OII	-	-	00	II.	II.	_	L	n	_	_
Naphtha	_	_	60/L	R	R	0	20/L	20/L	_	_
Naphthalene	C ₁₀ H ₈		80/L	95	R	0	nr	20/L		
•		Acusaus salution or salid				U			-	-
Nickel Acetate	C ₄ H ₆ NiO ₄	Aqueous solution or solid	-	R	R	-	-	-	-	-
Nickel Chloride	NiCl ₂	Aqueous solution or solid	-	R	R	0	R	R	-	-
Nickel Nitrate	Ni(NO ₃) ₂	Aqueous solution or solid	-	R	R	-	R	R	-	-
Nickel Sulfate	NiSO ₄	Aqueous solution or solid	-	R	R	0	R	R	-	-
Nicotine	C ₁₀ H ₁₄ N ₂	-	-	20	20	-	R	R	-	-
Nicotinic Acid	C ₆ H ₅ NO ₂	-	-	R	R	-	L	L	-	-
Nitric Acid	HNO ₃	3% in water	nr	80	80	0	R	R	nr	nr
Nitric Acid	HNO ₃	11-70% in water	nr	50	65	0	L	L	_	_
Nitric Acid	HNO ₃	up to 10% in water	nr	80	80	0	R	R	_	_
Nitric Acid, fuming	HNO ₃	ap to 1070 iii wator	nr	nr	nr	0	nr	nr	_	
Nitrobenzene	C ₆ H ₅ NO ₂		20/L	25	25	0	nr	nr		
		-							-	-
Nitroethane	C ₂ H ₅ NO ₂	-	-	20	20	-	20/L	20/L	-	-
Nitrogen	N ₂	-	L	R	R	0	-	-	-	-
Nitrogen Dioxide	NO ₂	-	-	75	75	0	-	-	-	-
Nitroglycerin	C ₃ H ₅ N ₃ O ₉	-	-	50	50	-	-	-	-	-
Nitromethane	CH ₃ NO ₂	-	-	50	50	0	20	20	-	-
Nitrotoluene	C ₇ H ₇ NO ₂	-	-	80	80	-	nr	nr	-	-
Vitrous Oxide	N ₂ O	-	-	nr	nr	_	-	-	_	_
)	1420									
Octane	C ₈ H ₁₈	-	60/L	R	R	-	R	R	-	-
Octene	C ₈ H ₁₆	_	-	R	R	-	-	-	_	_
Octyl alcohol	C ₈ H ₁₈ O	-		-	-	-	20/L	20/L	_	_
Deic Acid		3% in water	80/L	R		0	20/L	R	nr	
	C ₁₈ H ₃₄ O ₂	5% III Walei			R				nr	L
Dleic Acid	C ₁₈ H ₃₄ O ₂	-	80/L	R	R	0	20/L	R	-	-
Oleum	H ₂ SO ₄ +10%SO ₃	-	L	nr	nr	0	nr	nr	-	-
Olive Oil	-	=	R	R	R	0	20/L	20/L	-	-
Orthophosphoric acid	H ₃ PO ₄	-	-	-	-	-	L	L	-	-
Oxalic Acid	C ₂ H ₂ O ₄ x2H ₂ O	10% in water	60/L	50	50	0	R	R	-	-
Oxygen	02	-	60/L	R	R	0	L	L	R	R
Ozone	03	-	20/L	R	R	0	nr	20/L	-	_
)	-5									
Palm Oil	-	-	R	95	R	0	20	20	-	-
Palmitic Acid	C ₁₆ H ₃₂ O ₂		-	R	R	0	R	R	_	
	0 61 13202	=					n L	R	_	
Paraffin	-	-	-	R	R	0			-	
Paraffin oil	-	-	60	R	R	0	L	R	-	-
Peanut Oil	-	-	R	R	R	0	20	20	-	-
Perchloric Acid	HCIO ₄	70% in water	-	50	50	-	20	20	-	-
Perchloric Acid	HCIO ₄	10% in water	-	95	R	L	R	R	-	-
Perchloroethylene	C ₂ Cl ₄	-	20/L	R	R	0	nr	nr	-	-
Perchloromethyl Mercaptan	CCI ₄ S	-	-	50	50	-	-	-	-	_
Petrolatum	-	_	-	R	R	_	-	_	_	
ououtum										
Petroleum			60/L	R	R	0	L	L		-

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
Phenol	C ₆ H ₆ O	-	nr	50	50	0	20/L	R	-	-
Phenyl Ether	C ₁₂ H ₁₀ O	-	-	50	50	-	-	-	-	-
Phenylhydrazine	C ₆ H ₈ N ₂	=	-	50	50	-	20/L	20/L	-	-
Phenylhydrazine Hydrochloride	C ₆ H ₈ N ₂ -HCI	Aqueous solution or solid	-	50	50	-	20	20	-	-
Phosphorus Trichloride	PCl ₃	-	-	95	R	0	-	-	-	-
Phosphorus, Pentoxide	0 ₁₀ P ₄	-	-	95	R	-	-	-	-	-
Phosgene	CCI ₂ O	=	-	R	80	-	-	20/L	-	-
Phosphate Diammonium	(NH ₄) ₂ HPO ₄	-	60/L	-	-	-			-	-
Phosphoric Acid	H ₃ PO ₄	3 % in water	50/L	R	R	0	R	R	nr	L
Phosphoric Acid	H ₃ PO ₄	up to 50 %	40/L	R	R	0	R	R	-	-
Phosphorous Red	Р	=	-	25	25	-	-	-	-	-
Phosphorus Pentachloride	PCI ₅	=	-	95	R	-	-	-	-	-
Phosphorus, Oxychloride	POCI ₃	=	L	nr	nr	0	L	L	-	-
Phthalic Acid	C ₈ H ₆ O ₄	=	-	95	R	-	R	R	-	-
Picric Acid	C ₆ H ₃ N ₃ O ₇	up to 10 %	20/L	25	25	-	L	L	-	-
Polyvinyl Alcohol	(C ₂ H ₄ O)x	-	-	R	R	-	-	-	-	-
Polyester resins	-	-	-	-	-	-	20/L	20/L	-	-
Polyethylene Glycol	C_2 nH ₄ n+20n+ ₁	-	-	95	R	-	-	-	-	-
Polyvinyl Acetate	(C ₄ H ₆ O ₂)n	-	-	R	R	-	-	-	-	-
Potassium	K	-	-	nr	nr	-	-	-	-	-
Potassium Acetate	CH ₃ CO ₂ K	Aqueous solution or solid	-	R	R	-	R	R	-	-
Potassium Alum	KAI(SO ₄) ₂	Aqueous solution or liquid	-	R	R	-	-	-	-	-
Potassium Aluminium Chloride	-	-	-	R	R	0	-	-	-	-
Potassium Aluminium sulfate	KAI(SO ₄) ₂	=	R	R	R	-	R	R	-	-
Potassium Bicarbonate	KHCO ₃	Aqueous solution or solid	-	95	R	-	R	R	-	-
Potassium Bisulfate	KHSO ₄	Aqueous solution or solid	-	R	R	-	R	R	-	-
Potassium Borate	K ₂ B ₄ O ₇	Aqueous solution or solid	-	R	R	-	R	R	-	-
Potassium Bromate	KBrO ₃	Aqueous solution or solid	-	R	R	_	R	R	-	-
Potassium Bromide	KBr	Aqueous solution or solid	20	R	R	-	R	R	-	_
Potassium Carbonate saturated	K ₂ CO ₃	Aqueous solution or solid	-	R	R	0	R	R	-	_
Potassium Chloride	KCI	-	20/L	95	R	0	R	R	-	_
Potassium Chlorate	KCIO ₃	Aqueous solution or solid	-	R	R	-	R	R	-	_
Potassium Chromate	K ₂ CrO ₄	Aqueous solution or solid	-	R	R	_	R	R	-	_
Potassium Cyanide	KCN	Aqueous solution or solid	-	R	R	0	R	R	-	_
Potassium Dichromate	K ₂ Cr ₂ O ₇	-	20/L	R	R	-	R	R	-	_
Potassium Ferricyanide	C ₆ N ₆ FeK ₃	Aqueous solution or solid	-	R	R	_	R	R	_	_
Potassium Ferrocyanide	C ₆ N ₆ FeK ₄	Aqueous solution or solid	R	R	R	_	R	R	_	_
Potassium Fluoride	KF	Aqueous solution or solid	-	R	R	_	R	R		_
Potassium Hydroxide	KOH	> 50% in water	nr	nr	nr	0	nr	nr	_	_
Potassium Hydroxide	KOH	5 to 10 % in water	40/L	nr	nr	0	R	R	_	_
*	KCIO		40/L	95	R	U	20/L	20/L	_	_
Potassium Hypochlorite Potassium Iodide	KI	Aqueous solution Aqueous solution or solid	60	R	R	0	R	R	-	-
					R	U	R		-	-
Potassium Nitrate	KNO ₃	Aqueous solution or solid	40/L	R		-		R	-	-
Potassium Perborate	-	-	-	R	R	-	R	R	-	-
Potassium Perchlorate	KCIO ₄	- Agus agus agustian ag aglid	-	95	R	-	R	R	-	-
Potassium Permanganate	KMnO ₄	Aqueous solution or solid	nr	R	R	0	L	L	-	-
Potassium Persulfate	K ₂ S ₂ 08	- A	- D	50	50	-	R	R	-	-
Potassium Sulfate	K ₂ SO ₄	Aqueous solution or solid	R	R	R	0	R	R	-	-
Potassium Sulfide	K ₂ S	-	-	R	R	-	R	R	-	-
Potassium Thiocyanate	KSCN	-	-	-	-	-	R	R	-	-
Potassium Thiosulfate	K ₂ S ₂ O ₃	=	-	-	-	-	R	R	-	-
Propane liquid	C ₃ H ₈	-	R	R	R	0	-	20	-	-
Propyl Acetate	C ₅ H ₁₀ O ₂	=	-	40	25	0	-	-	-	-
Propyl Alcohol	C ₃ H ₈ O	Aqueous solution or liquid	-	65	65	0	R	R	-	-
Propylamine	C ₃ H ₆ N	-	-	nr	nr	-	-	-	-	-
Propylene Dibromide	C ₃ H ₆ Br ₂	-	-	95	R	-	-	-	-	-
Propylene Dichloride	C ₃ H ₆ Cl ₂	=	-	95	R	-	nr	nr	-	-
Propylene Glycol	C ₃ H ₈ O ₂	Aqueous solution or liquid	40/L	65	65	-	R	R	-	-
Propylene Oxide	C ₃ H ₆ O	=	-	nr	nr	0	-	R	-	-
Pyridine	C ₅ H ₅ N	-	20/L	nr	nr	0	L	L	-	-
Pyrogallol S	C ₆ H ₆ O ₃	Aqueous solution or solid	-	50	50	-	-	-	-	-
Salicylaldehyde	C ₇ H ₆ O2	-	-	50	50	0	-	-	-	-
Salicylic Acid saturated	C ₇ H ₆ O ₃	-	20	95	R	0	R	R	-	-
•	-	-	R	R	R	0	R	R	L	R
Sea Water										
Sea Water Selenic Acid	H₂SeO₄	Aqueous solution or nure	-	65	65	-	R	R	-	-
Selenic Acid	H ₂ SeO ₄	Aqueous solution or pure	-			- 0	R -	R -	-	-
	H ₂ SeO ₄ -	Aqueous solution or pure - -		65 R R	65 R R	- 0 0			- - -	- - -

SUBSTANCE	FORMULE	CONCENTRATION	PA11 - PA12 PA12 EHF _a	KYNAR® HD4000	KYNAR® FLEX 2800	PTFE - PFA FEP	L.D. PE	H.D. PE	PU ester	PU ether
Silver Cyanide	AgCN	-	-	R	R	0	R	R	-	-
Silver Nitrate	AgNO ₃	Aqueous solution or solid	-	R	R	0	R	R	-	-
Silver Sulfate	Ag ₂ SO ₄	-	-	R	R	-	-	-	-	-
Soda water	-	-	R	R	R	0	R	R	-	-
Sodium	Na	-	-	nr	nr	-	-	-	-	-
Sodium (Amalgam)		=	-	nr	nr	-	-	-	-	-
Sodium Acetate	C ₂ H ₃ NaO ₂	Aqueous solution or solid	40/L	R	R	0	R	R	-	-
Sodium Antimonate	NaO ₃ Sb	Aqueous solution or solid	-	-	-	-	R	R	-	-
Sodium Benzoate	C ₇ H ₅ NaO ₂	Aqueous solution or solid	-	R	R	-	R	R	-	-
Sodium Bicarbonate	NaHCO ₃	Aqueous solution or solid	60	R	R	0	R	R	-	-
Sodium Bisulfate	NaHSO ₄	3% in water	20	R	R	0	R	R	nr	L
Sodium Bisulfate	NaHSO ₄	Aqueous solution or solid	20	R	R	0	R	R	-	-
Sodium Bisulphite	NaHSO ₃	Aqueous solution or solid	-	R	R	0	R	R	-	-
Sodium Bromate	NaBrO ₃	Aqueous solution or solid	-	95	R	_	R	R	-	-
Sodium Bromide	NaBr	Aqueous solution or solid	20	R	R	0	-	-	-	-
Sodium Carbonate	Na ₂ CO ₃	Aqueous solution or solid	60/L	R	R	0	R	R	-	-
Sodium Chlorate	NaClO ₃	Aqueous solution or solid	nr	R	R	0	R	R	-	-
Sodium Chloride	NaCl	Aqueous solution or solid	R	-	-	0	R	R	-	_
Sodium Chlorite	NaClO ₂	Aqueous solution or solid	nr	R	R	L	20	20	-	
Sodium Chromate	Na ₂ CrO4	Aqueous solution or solid	-	95	R	-	R	R	-	_
Sodium Cyanide	NaCN	Aqueous solution or solid	_	R	R	0	R	R	_	
Sodium Dichromate	Na ₂ Cr ₂ O7	Aqueous solution or solid	-	95	R	0	R	R	-	-
Sodium Dithionite		4	-	40	40	-	n -	n -	-	-
	Na ₂ S ₂ O4	Aqueous solution or solid				-		R	-	-
Sodium Ferricyanide	C ₆ N ₆ FeNa ₃	Aqueous solution or solid	-	R	R	-	R		-	-
Sodium Ferrocyanide	C ₆ FeNa ₄ N ₆	Aqueous solution or solid	-	R	R	-	R	R	-	-
Sodium Fluoride	NaF	Aqueous solution or solid	-	R	R	-	R	R	-	-
Sodium Fluorosilicate	F ₆ Na ₂ Si	-	-	R	R	-	-	-	-	-
Sodium Hydrogen Phosphate	Na ₂ HPO ₄	Aqueous solution or solid	-	R	R	-	-	-	-	-
Sodium Hydroxide	NaOH	up to 3% in water	40/L	25	50	0	R	R	nr	L
Sodium Hydroxide	NaOH	greater than 50% in water	nr	nr	nr	0	R	R	-	-
Sodium Hydroxide	NaOH	up to 10% in water	40/L	25	50	0	R	R	-	-
Sodium Hypochlorite	NaClO	up to 15% in water	nr	95	R	0	20/L	R	nr	nr
Sodium lodide	Nal	Aqueous solution or solid	-	R	R	0	R	R	-	-
Sodium Nitrate	NaNO ₃	3% in water	R	R	R	0	R	R	L	L
Sodium Nitrate	NaNO ₃	Aqueous solution or solid	R	R	R	0	R	R	-	-
Sodium Nitrite	NaNO ₂	Aqueous solution or solid	nr	R	R	-	R	R	-	-
Sodium Palmitate	C ₁₆ H ₃₂ O ₂	=	-	R	R	-	-	-	-	-
Sodium Perchlorate	NaClO ₄	Aqueous solution or solid	-	R	R	-	R	R	-	-
Sodium Peroxide	Na ₂ O ₂	-	-	95	R	0	20/L	20/L	-	-
Sodium Phosphate	Na ₃ PO ₄	Aqueous solution or solid	20	R	R	-	R	R	-	-
Sodium Sulfate	Na ₂ SO ₄	-	60/L	-	R	0	R	R	-	-
Sodium Sulfide	Na ₂ S	3 % in water	60/L	-	-	-			L	L
Sodium Sulfide	Na ₂ S	Concentrated or paste	60/L	-	-	-			-	-
Sodium Thiocyanate	NaSCN	Aqueous solution or solid	-	R	R	-	-	-	-	-
Sodium Thiosulfate	Na ₂ S2O ₃	Aqueous solution or solid	20	R	R	0	R	R	-	-
Soybean Oil	-	-	R	R	R	-	L	R	-	-
Stannic Chloride	SnCl ₄	Aqueous solution or solid	-	R	R	-	R	R	-	-
Stannous Chloride	SnCl ₂	-	-	R	R	-	R	R	-	-
Starch	-	-	60	R	R	-	R	R	-	-
Steam	H ₂ O	=	nr	-	-	-			-	-
Stearic Acid	C ₁₈ H ₃₆ O ₂	3% in water	R	R	R	0	-	-	nr	L
Stearic Acid	C ₁₈ H ₃₆ O ₂	-	80/L	R	R	0	L	L	-	-
Stilbene	C ₁₄ H ₁₂	-	-	80	80	-	-	-	-	-
Styrene	C ₈ H ₈	_	40	80	85	0	20/L	20/L	-	_
Succinic Acid	C ₄ H ₆ O ₄	-	60	65	65	-	R	R	-	
Sulphur	S ₈	-	40	R	R	_	-	-	-	
Sulphur Chloride	SCI	-	-	25	25	0	-	-	-	
Sulphur Dichloride	SCI ₂		-	25	25	U	_	-	_	
•	SO ₂	-		80		0	- R			•
Sulphur Dioxide		-	20/L		80 nr	0		R		-
Sulphur Trioxide	SO ₃	2 0/ in water	20/L	nr	nr	-	nr	nr	nr	-
Sulphuric Acid	H ₂ SO ₄	3 % in water	40/L	R	R	0	R	R	nr	L
Sulphuric Acid	H ₂ SO ₄	60-93% in water	nr	95	R	L	20/L	20	-	-
Sulphuric Acid	H ₂ SO ₄	93-98% in water	nr	50	65	nr	20/L	20	-	-
Sulphuric Acid	H ₂ SO ₄	up to 60% in water	nr	R	R	L	R	R	-	-
Sulphuric Acid	H ₂ SO ₄	up to 10 %	40/L	R	R	0	R	R	-	-
Sulphuric Acid Fuming	H ₂ SO ₄	-	nr	nr	nr	nr	nr	nr	-	-
Sulfuryl Chloride	SO ₂ Cl ₂	-	nr	nr	nr	L	-	-	-	-
Sulfuryl Fluoride	SO ₂ F ₂	-	nr	25	25	-	-	-	-	-

T Tall oil Talloil Tallow Tannic Acid Tar Tartaric Acid Tetrabromoethane Tetrachloroethane Tetrachlorophenol Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide Tetramethylurea	- C ₇₆ H ₅₂ O ₄₆ - C ₄ H ₆ O ₆ C ₂ H ₂ Cl ₄ - C ₈ H ₂ OPb	- - - - 10% in water -	- 80/L -	R R	R					
Tallow Tannic Acid Tar Tartaric Acid Tetrabromoethane Tetrachloroethane Tetrachlorophenol Tetrachyllead Tetrahydrofuran Tetramethyllammonium Hydroxide	- C ₄ H ₆ O ₆ C ₂ H ₂ Br ₄ C ₂ H ₂ Cl ₄ -	- - - - 10% in water -			R					
Tannic Acid Tar Tartaric Acid Tetrabromoethane Tetrachloroethane Tetrachlorophenol Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide	- C ₄ H ₆ O ₆ C ₂ H ₂ Br ₄ C ₂ H ₂ Cl ₄ -	- - - 10% in water -	80/L -	R		-	-	-	-	-
Tar Tartaric Acid Tetrabromoethane Tetrachloroethane Tetrachlorophenol Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide	- C ₄ H ₆ O ₆ C ₂ H ₂ Br ₄ C ₂ H ₂ Cl ₄ -	- - 10% in water -	-		R	0	L	L	-	-
Tartaric Acid Tetrabromoethane Tetrachloroethane Tetrachlorophenol Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide	C ₂ H ₂ Br ₄ C ₂ H ₂ Cl ₄	- 10% in water -		R	R	0	R	R	-	-
Tetrabromoethane Tetrachloroethane Tetrachlorophenol Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide	C ₂ H ₂ Br ₄ C ₂ H ₂ Cl ₄	10% in water	-	R	R	-	-	-	-	-
Tetrachloroethane Tetrachlorophenol Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide	C ₂ H ₂ Cl ₄	-	80/L	R R	R R	0	R	R	-	-
Tetrachlorophenol Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide	-		-	n R	n R	0	nr nr	nr nr	-	-
Tetraethyllead Tetrahydrofuran Tetramethylammonium Hydroxide	CaHandh	- -	nr	65	65	-	-	-	-	_
Tetrahydrofuran Tetramethylammonium Hydroxide	GREDUED	-	20	R	R	_	-	_	-	_
Tetramethylammonium Hydroxide	C ₄ H ₈ O	Aqueous solution or liquid	60/L	nr	nr	L	nr	nr	-	-
Totromothyluroo	C ₄ H ₁₃ NO	up to 10% in water	-	65	R	-	-	-	-	-
retrametriylurea	-	-	-	nr	nr	-	-	-	-	-
Thioglycol		=	-	25	25	0	-	-	-	-
Thioglycolic Acid	C ₂ H ₄ O ₂ S	-	-	80	80	0	R	R	-	-
Thionyl Chloride	SOCI ₂	-	nr	nr	nr	0	nr	nr	-	-
Thiophosphoryl Chloride	Cl ₃ PS	-	-	nr	nr	-	-	-	-	-
Thread Cutting Oils	-	-	-	R	R	-	-	-	-	-
Titanium Tetrachloride	TiCl ₄	-	nr	65	65	-	nr	nr	-	-
Toluene	C ₇ H ₈	-	60/L	80	80	0	nr	20/L	-	-
Toluenesulfonyl Chloride Toluol	C ₇ H ₇ ClO ₂ S	-	-	50	50 ok	0	-	-	-	-
Tomato Juice	C ₇ H ₈	-	- R	ok R	R	0	R	R	-	-
Tributyl Phosphate	C ₁₂ H ₂₇ O ₄ P	-	80/L	95	R	L	20	R	-	_
Trichloroacetic Acid	C ₂ HCl ₃ O ₂	50 % in water pure	- -	50	50	0	R	R	_	_
Trichloroacetic Acid	C ₂ HCl ₃ O ₂	up to 10% in water	-	95	R	0	R	R	-	_
Trichlorobenzene	C ₆ H ₃ Cl ₃	-	-	95	R	0	nr	nr	-	-
Trichloroethane	C ₂ H ₃ Cl ₃	-	20/L	65	65	0	-	-	nr	nr
Trichloroethylene	C ₂ HCl ₃	-	20/L	R	R	0	nr	nr	-	-
Trichlorophenol	C ₆ H ₄ OCl ₃	-	nr	65	65	-	-	-	-	-
Tricresil phosphate	C ₇ H ₁₅ NO ₂	-	R	nr	nr	0	20	R	-	-
Triethanolamine	C ₆ H ₁₅ NO ₃	3% in water	-	-	-	0	-	-	nr	L
Triethanolamine	C ₆ H ₁₅ NO ₃	Aqueous solution or liquid	-	50	50	0	-	-	-	-
Triethyl phosphate	C ₆ H ₁₅ O ₄ P	-	-	nr	nr	0	-	-	-	-
Trifluoroacetic Acid	C ₂ HF ₃ O ₂	50% in water	-	95	R	0	-	-	-	-
Trifluoroacetic Acid	C ₂ HF ₃ O ₂ C ₈ H ₁₈	-	60	50	R -	U	- R	- R	-	-
Trimethyl Pentane Trimethylamine	C ₃ H ₉ N	Aqueous solution or gas	-	50	40	0	n -	n -	-	-
Trisodium phosphate	Na ₃ PO ₄	Solution sat.	R	-	40	-	R	R	-	-
Trisodium Phosphate	Na ₃ PO ₄	-	R	-	-	_		.,	-	_
Turpentine	-	-	60/L	R	R	0	nr	nr	-	-
U										
Urea	CH ₄ N ₂ O	3% in water	R	R	R	0	R	R	nr	L
Urea	CH ₄ N ₂ O	Aqueous solution or solid	80/L	R	R	0	R	R	-	-
Uric Acid	C ₅ H ₄ N ₄ O ₃	-	80/L	-	-	-	R	R	-	-
V										
Varnish	-	-	-	R	R	-	-	-	-	-
Varsol	-	=	-	R	R	-	-	-	-	-
Vegetable Oil	-	-	R	R	R	0	L	R	-	-
Vinegar Vinyl Acetate	C ₂ H ₄ O ₂	-	L -	R R	R R	0	R	R R	-	-
Vinyl Acetate Vinyl Chloride	C ₄ H ₆ O ₂ C ₂ H ₃ Cl	=	20	95	R	0	L -	n	-	-
Vinylidene Chloride	C ₂ H ₂ Cl ₂		-	95	R	0	nr	nr	-	_
W	02112012			00						
Wasted Oil	-	-	-	-	ok	-	-		-	-
Water	H ₂ O	-	Rb	-	-	0			L	R
Water distilled	-	=	Rb	R	R	0	R	R	-	-
Whiskey	-	-	-	R	R	0	20	20	-	-
Xilplo	-	-	-	-	-	-	-		-	-
Xylene	C ₈ H ₁₀	-	60/L	95	R	0	nr	20/L	-	-
Z	011 0 7	A sure			-					
Zinc Acetate	C ₄ H ₁₀ O ₆ Zn	Aqueous solution	-	R	R	-	- D	-	-	-
Zinc Bromide Zinc Chloride	ZnBr ₂	Aqueous solution or solid Aqueous solution or solid	- 60/L	R R	R R	0	R R	R R		-
Zinc Unionae Zinc Nitrate	ZnCl ₂ Zn(NO ₃) ₂	Aqueous solution or solid	0U/L	R	R	-	- -	n -		
Zinc Nitrate Zinc Sulfate	Zn(NO _{3/2} ZnSO ₄	Aqueous solution or solid	-	n R	R	0	R	R		
Lino Juliato	211004	riquodus solution or sollu		п	11	J	11	11		_

SPECIAL AGRICOLE

Tube Polyamide PA 12 EXTRAFLEX MB-Longlife™

Polyamide 12 extraflexible d'origine chimique. 7 couleurs différentes.

Réf	Dimensions (mm)		Poids	Rayon de courbure	Pression	à 20°
	Ø ext	Ø int	gr. m	mm	d'éclatement	de travail
PAJ 4x6	6	4	15,70	35	62	21
PAJ 5,5x8	8	5,5	26,50	35	57	19
PAJ 7,5x10	10	7,5	34,5	40	44	15
PAJ 9x12	12	9	49,46	50	44	15

Tube Polyuréthane PU 98 MB-Longlife™

Polyuréthane d'origine chimique à base d'ether. Différentes couleurs.

Réf	Dimer (m		Poids	Rayon de courbure	Pression a	à 20°
IVei	Ø ext	Ø int	gr. m	mm	d' éclatement	de travail
PU 5,5x8	8	5,5	32,85	45	37	12
PU 7,5x10	10	7,5	42,59	40	29	10
PU 9x12	12	9	61,32	50	29	10

Caractéristiques techniques

Applications:

Air comprimé,

Glissement de pièces métalliques ou bois,

Vibrateurs.

Mouvement pièces métalliques,

Manipulateurs,

Robots pneumatiques.

Températures :

Plage de températures : -40°C à +80°C.

Pressions en % en fonction des températures.							
20°	40°	60°	80°				
100%	85%	60%	40%				

Tolérances :

- ± 0,07 sur l'épaisseur de la paroi
- ± 0,07 sur le Ø jusqu'à 10 mm
- ± 0,1 sur le Ø de 12 à 22 mm
- ± 0,5% sur le poids

Caractéristiques techniques

Applications:

Air comprimé et chaînes porte-câbles.

Raccords préconisés :

Raccords rapides.

Températures :

Plage de températures : -40°C à +60°C.

		ns en % en températu		
20°	30°	40°	50°	60°
100%	83%	72%	64%	47%

Tolérances:

- ± 0,05 sur l'épaisseur de la paroi
- ± 0,05 sur le Ø jusqu'à 10 mm
- ± 0,1 sur le Ø de 12mm
- \pm 0,5% sur le poids

Tube Polyuréthane ELASTOLLAN® C 98

Polyuréthane d'origine chimique à base d'ether. 15 couleurs différentes. Disponibles en spiralés sur demande. Dureté 52 Shore D.

Réf		nensions (mm) Poids Rayon de courbure		Rayon de courbure	Pression à 20°		
1101	Ø ext			d' éclatement	de travail		
95C 5,5x8	8	5,5	32,85	45	37	12	
95C 7,5x10	10	7,5	42,59	40	29	10	
95C 9x12	12	9	61,32	50	29	10	

Caractéristiques techniques

Applications:

Air comprimé, chaînes porte-câbles. Joints pour pièces hydrauliques, Robots, Manipulateurs. Tranport produits abrasifs.

Raccords préconisés :

Raccords rapides.

Températures :

Plage de températures : -40°C à +60°C.

		ns en % en températu		
20°	30°	40°	50°	60°
100%	83%	72%	64%	47%

Tolérances :

- ± 0,07 sur l'épaisseur de la paroi
- ± 0,07 sur le Ø jusqu'à 12 mm
- ± 0,1 sur le Ø de 14mm
- ± 0,5% sur le poids

Tube Polyuréthane POLIURETANO 1185 CRT

Polyuréthanes série 1185 CRT d'origine chimique à base d'éther avec un renfort textile en polyester.
Résistance optimale à l'abrasion, grande élasticité et grande résistance hydrolitique.
Dureté ±85 shore A.

Réf	Dimensions (mm)		Pression à 20°		
	Ø ext	Ø int	d' éclatement	de travail	
185CRT 5,5x8	8	5,5	40	13	
185CRT 6,5x10	10	6,5	60	20	
185CRT 7,5x10 (*)	10	7,5	40	13	
185CRT 8x12	12	8	60	20	
185CRT 11x16	16	11	45	15	
185CRT 13x19	19	13	45	15	

Caractéristiques techniques

Applications:

Secteur agricole,

Ateliers de carrosserie et de montage de pneus.

Raccords préconisés :

Raccords rapides.

(*) raccords à queue cannelée avec colliers.

Températures :

Plage de températures : -40°C à +60°C.

		ions en % ε es tempéra		
20°	30°	40°	50°	60°
100%	83%	72%	64%	47%

Tolérances:

- ± 0,15 sur l'épaisseur de la paroi
- ± 0,15 sur le Ø externe
- ± 0.15 sur le Ø interne

SPECIAL FREINS PNEUMATIQUES

Tube Polyamide

PA 12 PHLY

Polyamide 12 semiflexible d'origine chimique. PHLY : plastifié, stabilisé à la température et à la lumière avec pression d'éclatement élevée et résistance aux chocs à basses températures.

Réf	Dimen (m		Poids	Rayon de courbure	Pression	à 20°
Kei	Ø ext Ø		gr. m	mm	d'éclatement	de travail
12PHLY 4x6	6	4	16,01	30	108	36
12PHLY 6x8	8	6	22,42	40	77	26
12PHLY 6x10	10	6	51,24	55	135	45
12PHLY 8x10	10	8	28,83	60	60	20
12PHLY 9x12	12	9	50,44	60	77	26
12PHLY 12x16	16	12	89,68	95	77	26
12PHLY 14x18	18	14	102,49	100	68	23

Caractéristiques techniques

Applications:

secteur automobile (DIN 73378/74324).

Températures :

Plage de températures : -40°C à +80°C.

Pressions en % en fonction des températures.									
20°	30°	40°	60°	80°					
100%	83%	72%	58%	47%					

Tolérances :

- ± 0,07 sur l'épaisseur de la paroi
- \pm 0,07 sur le Ø jusqu'à 10 mm
- ± 0,1 sur le Ø de 12 à 18 mm
- ± 0,5% sur le poids

Tube Polyuréthane

Anti UV

Polyuréthane d'origine chimique. Excellente résistance à l'humidité, aux basses températures, stabilisé à la lumière.

Réf	Dimen	sions	Tube linéaire	Au repos	En exercice	Bobine
	Ø ext	Ø int	m	mm	m	n.
SABE 8x12x4,5	12	8	4,5	300	3,50	23
SABE 8x12x6	12	8	6	380	5	29

Réf	gauche-droite	Ø int-ext	Ø Raccords
Kei	mm	mm	mm
SABE 8x12x4,5	150-150	50-74	M16x1,5
SABE 8x12x6	150-150	50-74	M16x1,5

Tube Polyamide PA 12 SPIRALE

Automotive DIN 73378-74324 Polyamide 12 fexible d'origine chimique. PHL: plastifié, stabilisé à la température et à la lumière. Resistance au vieillissement. Faible migration des plastifiants.

Dimensions		Tube linéaire	Au repos	En exercice	Bobine	gauche-droite	Ø int-ext	Ø Raccords	
Réf	еØо	i Ø i m		mm	mm m		mm	mm	mm
S12R 8x12x5	12	8	5	190	3,50	15	180-180	80-104	M16x1,5
S12R 8x12x7	12	8	7	275	4,70	22	180-180	80-104	M16x1,5
S12R 9x12x5	12	9	5	144	3,50	12	180-180	100-124	M16x1,5
S12R 9x12x6	12	9	6	190	4,70	15	180-180	100-124	M16x1,5
S12R 9x12x7	12	9	7	245	5,70	18	180-180	100-124	M16x1,5

Tube Polyamide PA 12 PARTIELLEMENT SPIRALE

Automotive DIN 73378-74324

Polyamide 12 fexible d'origine chimique. PHL: plastifié, stabilisé à la température.

Couleur : bleu, rouge, noir

Sur demande connections camion M22x1,5

Réf	Dimen	sions	Tube linéaire	Au repos	En exercice	Bobine	gauche-droite	Ø int-ext	Ø Raccords	
Kei	еØо	iØi	m	mm	m	n.	mm	mm	mm	
S12RS 8x12x5	12	8	5	75	3,50	6	160-2500	80-104	M16x1,5	
S12RS 9x12x5	12	9	5	75	3,50	6	160-2500	80-104	M16x1,5	

RESERVOIRS, RESEAUX D'AIR ET TRAITEMENT DE L'AIR

SOMMAIRE - TRAITEMENT DE L'AIR

Micro régulateur MR G/18 - G/14

Lignes modulaires

M14 G1/4..... page 335

R M14.. Régulateur

F M14 ..

MF M14.. Micro Filtre

L M14 .. Lubrificateur

L M14 .. VL Lubrificateur VL

FR M14 Filtre Régulateur

V3 M14 Valve 3 voies avec bloqueur

SV M14.. Z Valve d'arrêt

AVP M14 APC Valve à démarrage progressif

M38 G3/8.....page 340

MF M38 ..

L M38 .. Lubrificateur

L M38 .. VL Lubrificateur VL

FR M38 ... Filtre Régulateur

Valve 3 voies avec bloqueur

SV M38.. Valve d'arrêt

progressif

Valve à démarrage

FR+L M38 .. Ensemble 🔷

M12 G1/2..... page 345

R M12 .. Régulateur

MF M12 .. Micro Filtre

L M12 .. Lubrificateur

L M12 .. VL Lubrificateur VL

Filtre Régulateur

V3 M12 Valve 3 voies avec bloqueur

SV M12 .. Valve d'arrêt

AVP M12 APC Valve à démarrage progressif

FR+L M12. Ensemble FR+L

M34.....page 349

R M34 .. Régulateur

F M34 .. Filtre

MF M34 .. Micro Filtre

L M34 .. Lubrificateur

L M34 .. VL Lubrificateur VL

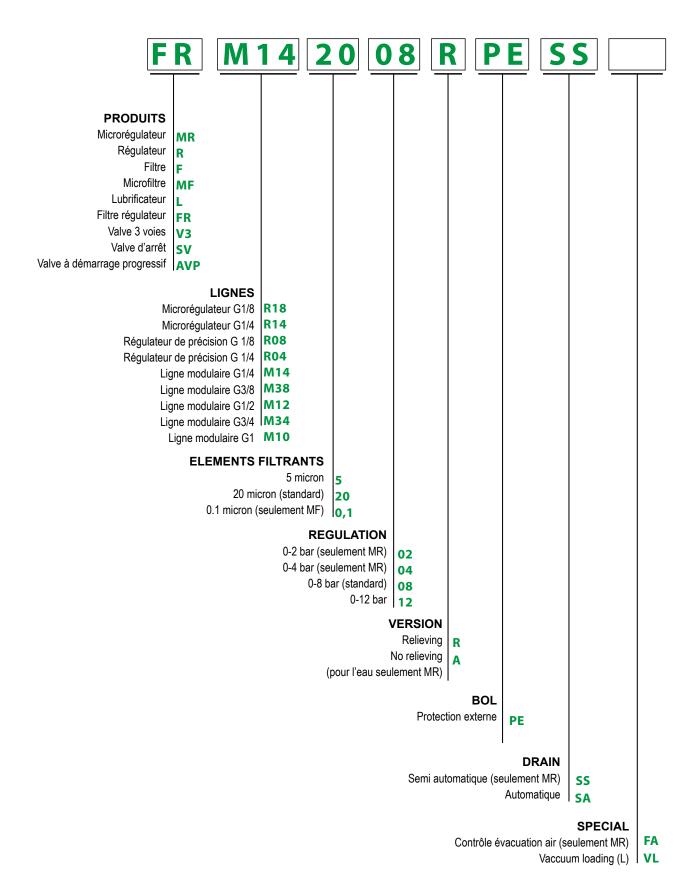
FR M34. Filtre Régulateur

Valve 3 voies avec bloqueur

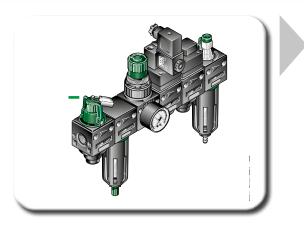
SV M34.. Valve d'arrêt AVP M34 APC Valve à démarrage 'progressif

FR+L M34 .. Ensemble

M10.....page 353



Régulateur



GUIDE DE CODIFICATIONS

Lignes modulaires Série M14 - G1/4

Connexions: G1/4

Corps et bol de garde : Résine acétalique (POM)

Bol: Polyamide trempé transparent

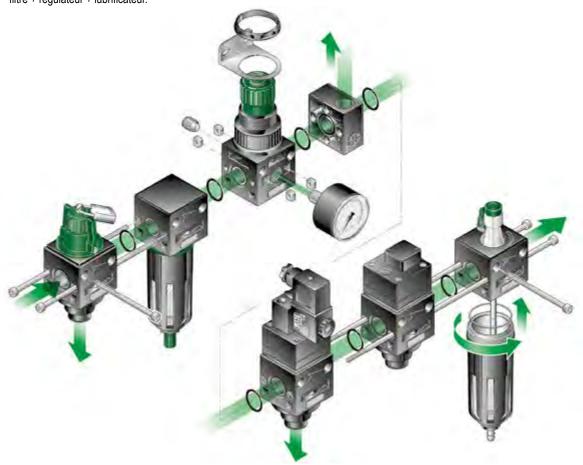
Température ambiante : +5°C à +50°C

Connexions de jauges : G1/8 Pression d'entrée maxi : 16 bar

Fixation : Avec écrou pour le montage du panneau, ou peut être

monté sur un support mural

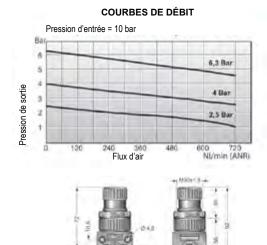
Caractéristiques techniques

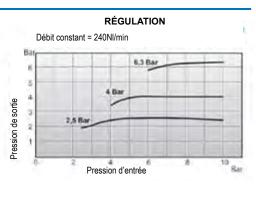

La série M14, également disponible avec des bols transparents, se caractérise par ses dimensions compactes. Elle offre une gamme complète de composants pour le traitement de l'air.

La gamme couvre:

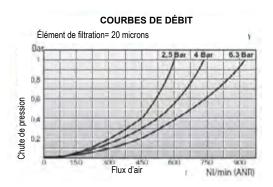
- filtres et microfiltres avec différents niveaux d'extraction de poussière et de condensat avec la possibilité de monter le drainage automatique,
- régulateurs de pression jusqu'à 12 bar,
- graisseurs standards et souffrant de dépression chargement,
- 3 voies vannes d'arrêt avec verrou,
- robinets d'arrêt avec un dispositif utilisé pour couper l'alimentation de l'air tout en soulageant le circuit en aval par une commande électrique ou pneumatique à distance. Démarrer lentement les vannes pour une mise en pression progressive du système.

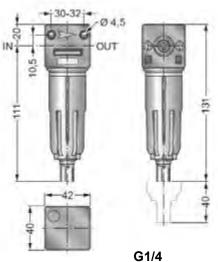
Des groupes complets de traitement de l'air sont disponibles, tels que:


- filtre régulateur + lubrificateur,
- filtre régulateur + lubrificateur + vanne d'arrêt en amont,
- filtre + régulateur + lubrificateur.



Régulateur R M14

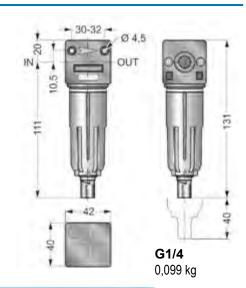



G1/4 0,135 kg

Filtre F M14

- Degré de filtration : 5 microns ou 20 microns (standard).
- Faible chute de pression (Pression d'entrée max : 16 bar).
- Cuve de protection (standard, 22 cc).
- Évacuation des condensats : manuelle et semi-automatique en version intégrée ou automatique.

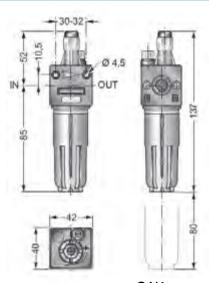
0,100 kg


Microfiltre MF M14

- Idéal pour circuit où la présence d'huile est proscrite.
- Efficacité de filtration de 99.99% avec particules de 0.1 micron.
- Longue vie des éléments filtrants.
 - Installation conseillée d'un filtre en amont.

COURBES DE DÉBIT

Chute de pression Flux d'air NI/min (ANR)

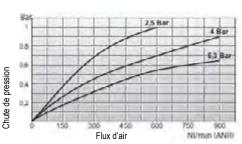


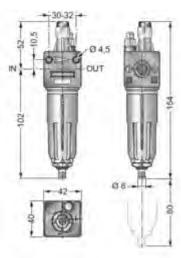
Lubrificateur L M14

- Peut être monté sur un support mural.
- Cuve de protection (standard, 42 cc).
- Viscosité d'huile recommandée : ISÓ VG32.
- Pression de service maximale: 16 bar (230 Psi).

COURBES DE DÉBIT Chute de pression Flux d'air Ni/min (ANR)

G1/4 0,100 kg

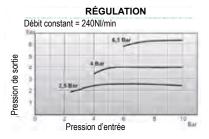

Lubrificateur L M14..VL


Lubrificateur à remplissage automatique

- Pression d'activation minimum ; 3 bar (40 Psi).
- Remplissage de l'huile sans interruption du système en gardant le bouton à la base du lubrificateur enfoncé.

G1/4 0,145 Kg

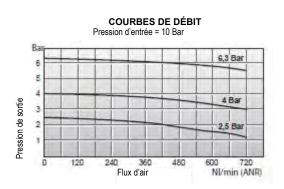
Filtre régulateur FR M14



- Peut être monté sur un support mural.
- Bouton de sécurité verrouillable.
- Pression: 0-8 bar (standard) ou 0-12 bar.
- Décharge de surpression incorporée.

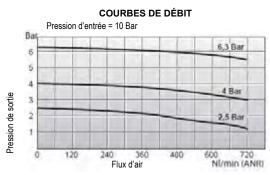
COURBES DE DÉBIT

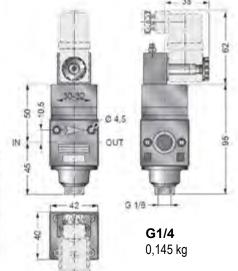
Pression d'entrée = 10 bar



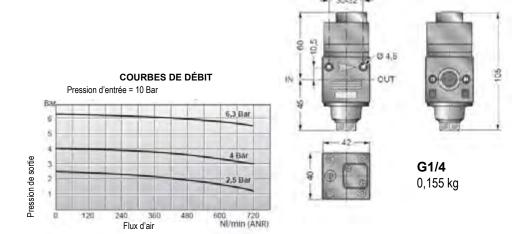

G1/4 0,170 Kg

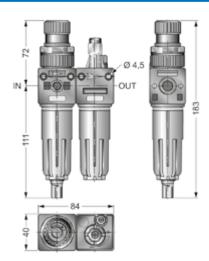
Valve 3 voies avec bloqueur V3 M14





Valve d'arrêt SV M14




Valve à démarrage progressif AVP M14 APC

Ensemble FR+L M14..

Filtre régulateur + unité de lubrification

Unité intégrée pour traitement de l'air assemblée avec:

- FR M14 .. Filtre régulateur,
- L M14 .. Graisseur.
- Degré de filtration: 5 microns ou 20 microns (standard).
- Viscosité d'huile recommandée : ISO VG32.
- Pression de service maximale : 16 bar.

G1/4 0,290 kg

Lignes modulaires

Série M38- G3/8

Connexions: G3/8

Corps et bol de garde : Verre de polyamide renforcé

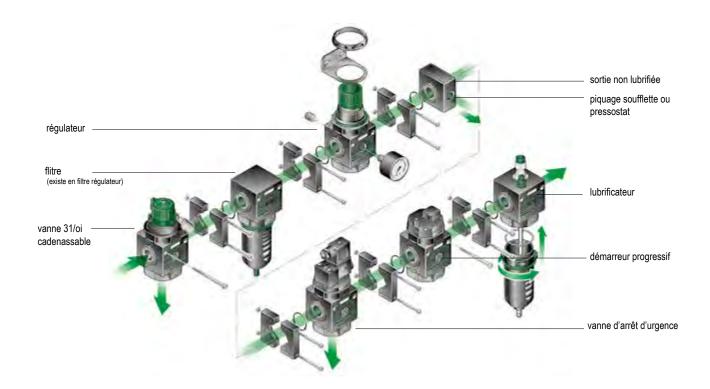
Bol : Polyamide trempé transparent

Température ambiante : +5°C à +50°C

Connexions de jauges : G1/8 Pression d'entrée maxi: 16 bar

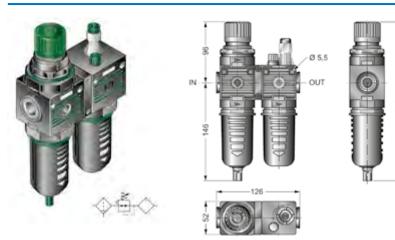
Fixation : Avec écrou pour le montage du panneau, ou peut être

monté sur un support mural


Caractéristiques techniques

La série M38 est fournie avec un excellent rapport dimensions / performances. Elle offre une gamme complète de composants pour le traitement de l'air.

- filtres avec différents niveaux d'extraction de poussière et de condensat avec la possibilité de monter le drainage automatique
- régulateurs de pression jusqu'à 12 bar; graisseurs standard et souffrant de dépression chargement
- 3 voies sur vannes d'arrêt avec verrou
- vannes d'arrêt avec un dispositif utilisé pour couper l'alimentation de l'air, tout en soulageant le circuit en aval par une commande électrique ou pneumatique à distance. Démarrer lentement les vannes pour une mise en pression progressive du système.

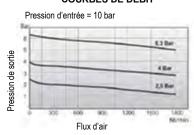

Des groupes complets de traitement de l'air sont disponibles tels que:

- · filtre régulateur + lubrificateur,
- filtre régulateur + lubrificateur + vanne d'arrêt en amont,
- filtre + régulateur + lubrificateur.

Ensemble FR+L M38..

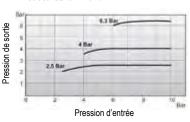
Filtre régulateur + unité de lubrification

Unité intégrée pour traitement de l'air assemblée avec:

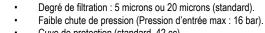

- FR M38 .. Filtre régulateur,
- L M38 .. Graisseur.
- Degré de filtration: 5 microns ou 20 microns (standard).
- Viscosité d'huiler ecommandée : ISO VG32.
- Pression de service maximale: 16 bar.

0,660 kg

Régulateur R M38 ..



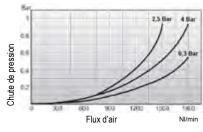
COURBES DE DÉBIT


RÉGULATION

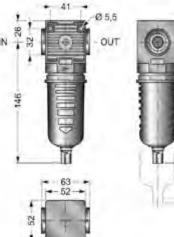
Débit constant = 240NI/min

G3/8 0,325 kg

Filtre F M38 ..

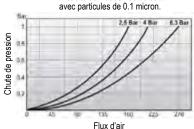


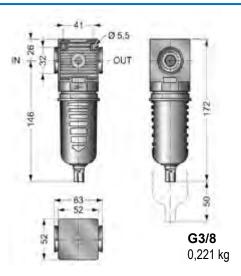
Cuve de protection (standard, 42 cc).


Évacuation des condensats : manuelle et semi-automatique en version intégrée ou automatique.

COURBES DE DÉBIT

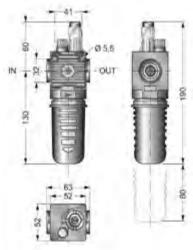
Élément de filtration = 20 microns




Microfiltre MF M38 ..

- Idéal pour circuit où la présence d'huile est proscrite.
- Efficacité de filtration de 99.99% avec particules de 0.1 micron.
- Longue vie des éléments filtrants.
- Installation conseillée d'un filtre en amont.

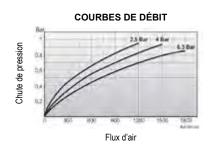
COURBES DE DÉBIT Efficacité de filtration de 99.99% avec particules de 0.1 micron.

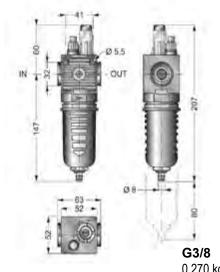


Lubrificateur L M38 ..

- Peut être monté sur un support mural.
- Cuve de protection (standard, 68 cc).
- Viscosité d'huile recommandée : ISO VG32.
- Pression de service maximale : 16 bar (230 Psi).

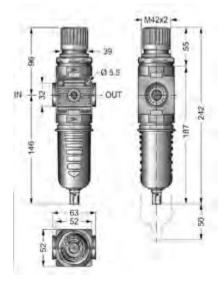
COURBES DE DÉBIT Chute de pression Flux d'air


G3/8 0,230 kg

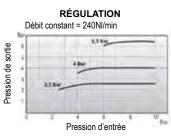

Lubrificateur L M38..VL

Lubrificateur à remplissage automatique

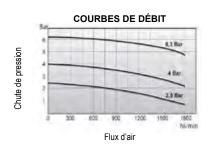
- Pression d'activation minimum ; 3 bar (40 Psi).
- Remplissage de l'huile sans interruption du système en gardant le bouton à la base du lubrificateur enfoncé.

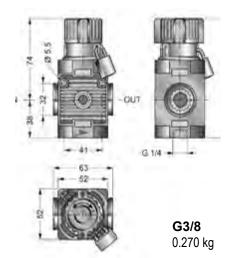


0,270 kg



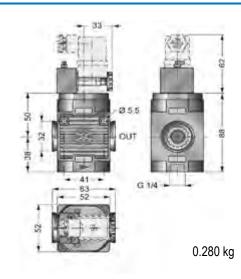
Filtre régulateur FR M38 ..



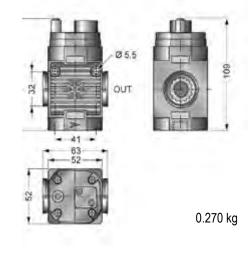

G3/8 0,410 kg

Valve à 3 voies V3 M38 ..

- Utilisé pour arrêter l'alimentation en air tout en protégeant le circuit.
- Utilisé lors des opérations de maintenance pour empêcher le système d'être accidentellement sous pression.
- Raccord d'évacuation : G1/4 BSP.
- L'appareil est livré avec un verrou.



- Disponible avec les normes CNOMO de commande électrique à distance (Version E1S) ou commande pneumatique à distance (version PP).
- Raccord d'évacuation : G1/4 BSP.
- Pression minimum autorisée : 3 Bar (40 Psi).
- Pression maximum tolérée : 10 Bar (145 Psi).



Valve de démarrage lent AVP M38 APC ...

- La vanne délivre une pression optimale permettant à l'air de circuler lentement dans le circuit et qui peut atteindre environ 60 % de pression.
- Raccord d'évacuation : G1/4 BSP.
- Utilisation d'un régulateur de débit intégré pour établir le temps de pressurisation .
- Pression de travail : 3 ÷ 10 Bar (40 ÷ 145 Psi).

Lignes modulaires Série M12- G1/2

Connexions: G1/2

Corps et bol de garde : Verre de polyamide renforcé

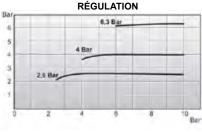
Bol : Polyamide trempé transparent Température ambiante : +5°C à +50°C Connexions de jauges : G1/8

Pression d'entrée maxi : 16 bar

Fixation : Avec écrou pour le montage du panneau, ou peut être

monté sur un support mural.

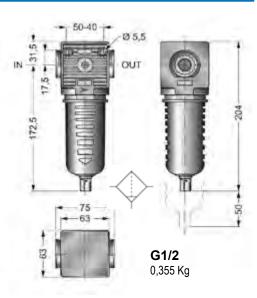
Caractéristiques techniques


La série M12 est conçue pour des débits élevés. Elle offre une gamme complète de composants pour le traitement de l'air. La gamme couvre les filtres avec différents niveaux d'extraction de poussière et condensat avec la possibilité de monter le drainage automatique grâce aux régulateurs de pression allant jusqu'à 12 bar.

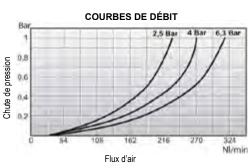
Régulateur R M12 ..

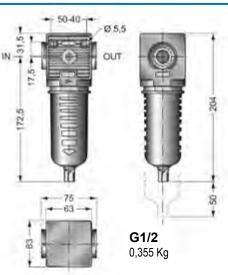
- Membrane roulante.
- Peut être fixé au mur en utilisant les trous relatif avec bague pour l'assemblage de panneau.
- Bouton de sécurité verrouillable.
- Pression maximale autorisée: 0 ÷ 8 Bar (standard) ou 0 ÷ 12 Bar.
- Décharge de surpression incorporée.

G1/2 0,435 Kg

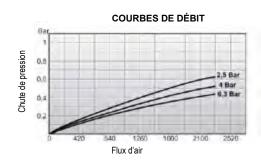

Filtre F M12 ..

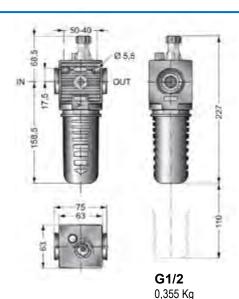
- Degré de filtration : 5 microns ou 20 microns (standard).
- Faible chute de pression (pression d'entrée max : 16 bar).
- Bol de protection 100cc : utilisant une connexion rapide de sécurité.
- Drainage de condensat : manuel, semi-automatique, à encastrer, ou en automatique.




Microfiltre MF M12 ..

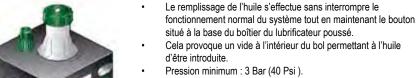
- Essentiel dans le circuit où l'huile est interdite.
- Efficacité de filtration 99,99% avec 0,1 micron.
- Élément filtrant très résistant.
- Prévu pour installer un filtre à l'entrée.
- Bol et drainage du condensat.

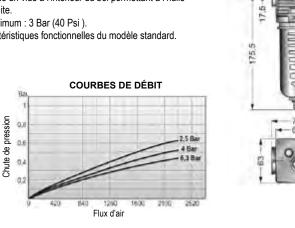


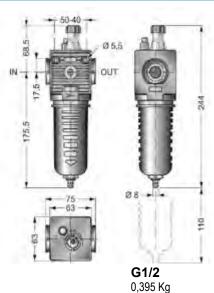


Lubrificateur L M12..

- Séparateur de brouillard, débit d'air à pression constante
- Garantit un taux de pression bas.
- Peut être fixé au mur en utilisant les trous relatifs (Ø 5,5 mm).
- Réservoir de 140cc garantissant une grande sécurité.
- Viscosité d'huile recommandée : ISO VG32.
- Pression maximale : 16 bar (230 Psi).

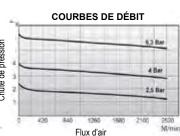


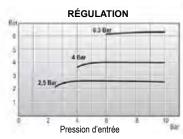


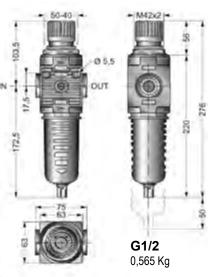

Lubrificateur L M12 ..VL

Système de graissage automatique

Autres caractéristiques fonctionnelles du modèle standard.





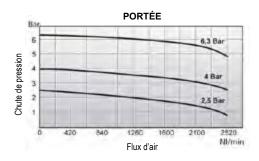

Filtre Régulateur FR M12 ..

- Membrane roulante.
- Bouton de sécurité verrouillable.
- Décharge de surpression incorporée.
- Degré de filtration : 5 microns ou 20 microns (standard) .
- Plages de pression : 0 à 8 bar (standard) ou de 0 à 12 bar.
- Fixation, bol et évacuation des condensats : voir F M12 (page 346).

Valve à 3 voies V3 M12

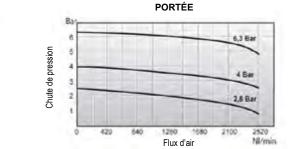
- Utilisé pour arrêter l'alimentation en air tout en protégeant le circuit.
- Utilisé lors des opérations de maintenance pour empêcher le système d'être accidentellement sous
- Raccord d'évacuation : G1/4 BSP.
- L'appareil est livré avec un verrou.

COURBES DE DÉBIT 6,3 Bar Chute de pression Flux d'air



Vanne d'arrêt SV M12

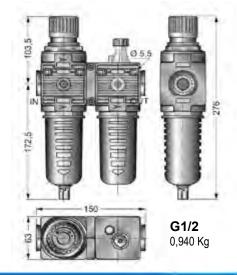
- Utilisé pour arrêter l'alimentation en air tout en protégeant le circuit.
- Utilisé lors des opérations de maintenance pour empêcher le système d'être accidentellement sous
- Raccord d'évacuation : G1/4 BSP.
- L'appareil est livré avec un verrou.





Valve à démarrage progressif AVP M12 APC

- Avant de délivrer une pression maximale, l'air est autorisé à circuler dans la soupape de démarrage lentement autour du circuit..
- Utilisé lors des opérations de maintenance pour empêcher le système d'être accidentellement sous pression.
- Raccord d'évacuation : G1/4 BSP.
- Le régulateur de débit intégré spécial définit le temps de mise sous pression du circuit pneumatique.
- Fourchette de pression : 3 ÷10 Bar (40 ÷ 145 Psi).



FR+L M12..

- Utilisé pour arrêter l'alimentation en air tout en protégeant le circuit.
- Utilisé lors des opérations de maintenance pour empêcher le système d'être accidentellement sous
- Raccord d'évacuation : G1/4 BSP.
- L'appareil est livré avec un verrou.

Lignes modulaires

Série M34- G3/4

Connexions: G3/4

Corps et bol de garde : Verre de polyamide renforcé

Bol : Polyamide trempé transparent

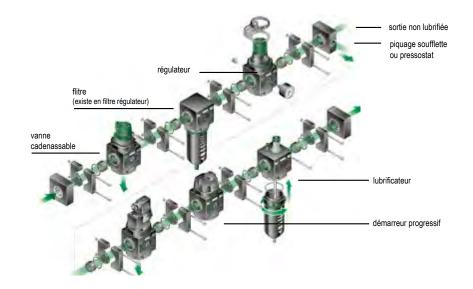
Température ambiante : +5°C à +50°C

Connexions de jauges : G1/8 Pression d'entrée maxi : 16 bar

Fixation : Avec écrou pour le montage du panneau,

ou peut être monté sur un support mural.

Caractéristiques techniques


Le M 34 vient de la série M 12 mais avec connexions G 3/4.

La gamme couvre:

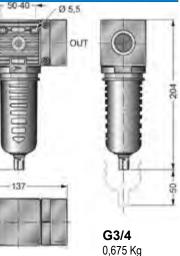
- filtres et microfiltres avec différents niveaux d'extraction de poussière et de condensat avec la possibilité de monter le drainage automatique
- régulateurs de pression jusqu'à 12 bar
- graisseurs à la fois standards et sous-vide.
- 3 voies vannes d'arrêt avec verrou
- robinets d'arrêt avec un dispositif utilisé pour couper l'alimentation de l'air, tout en soulageant le circuit en aval par une commande électrique ou pneumatique à distance. Vannes à démarrage lent pour une pressurisation progressive du système.

Des groupes complets de traitement de l'air sont disponibles, tels que:

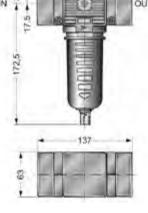
- · filtre régulateur + lubrificateur,
- filtre régulateur + lubrificateur + vanne d'arrêt en amont,
- filtre + régulateur + lubrificateur.

Régulateur R M34 ..

- Membrane roulante.
- Peut être fixé au mur en utilisant les trous relatifs avec bague pour l'assemblage de panneau.
- Bouton de sécurité verrouillable.
 - Pression maximale autorisée : 0 ÷ 8 Bar (standard) ou 0 ÷ 12 Bar.
- Décharge de surpression incorporée.


Filtre F M34 ..

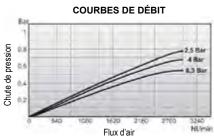
- Degré de filtration : 5 microns or 20 microns (standard).
- Pression d'entrée max. : 16 Bar.
- Réservoir 100cc incluant une connexion rapide et sécurisée.
- Drainage du condensat : manuel ou semi-automatique dans la version intégrale ou avec flotteur pour la version automatique (SA).

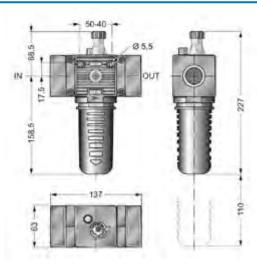

Micro Filtre MF M34 ..

- Coalescence microfiltre résistant à l'huile.
- 99.99% d'efficacité de filtration avec 0,1 micron.
- Élément filtrant durable.
- Il est conseillé d'installer un filtre sur à l'entrée.
- Bol et drainage du condensat : voir F M34 (page 350).

COURBES DE DÉBIT

► 50-40 **→** Ø 5.5

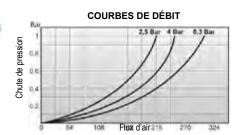


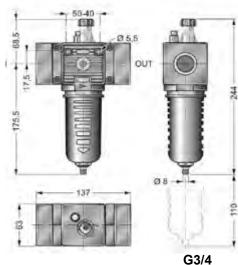

0,660 Kg

Lubrificateur L M34 ..

- Séparateur de brouillard, débit d'air à pression constante.
- Garantit un taux de pression bas.
- Peut être fixé au mur en utilisant les trous relatifs (Ø 5,5 mm).
- Réservoir de 140cc garantissant une grande sécurité.
- Viscosité d'huile recommandée ISO VG32.
- Pression maximale: 16 bar (230 Psi).

G3/4 0,670 Kg



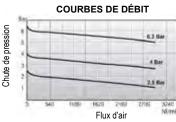

Lubrificateur L M34 .. VL

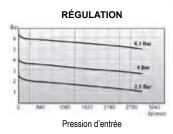
Système de graissage automatique

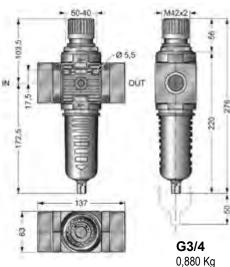
- Le remplissage de l'huile s'effectue sans interrompre le fonctionnement normal du système tout en maintenant le bouton situé à la base du boîtier du lubrificateur poussé
- Provoque un vide à l'intérieur du réservoir ce qui permet à l'huile d'être introduite.
- Pression minimum d'au moins 3 Bar (40 Psi).
- Autres caractéristiques fonctionnelles comme le modèle standard.

0,695 Kg

Filtre Régulateur FR M34 ..



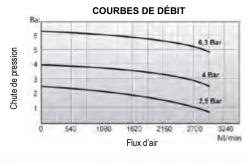

- Membrane déroulante.
- Bouton de sécurité verrouillable.
- Décharge de surpression incorporée.
- Degré de filtration : 5 microns ou 20 microns (standard).
- Plages de pression : 0 ÷ 8 Bar (standard) ou de 0 ÷ 12 Bar.

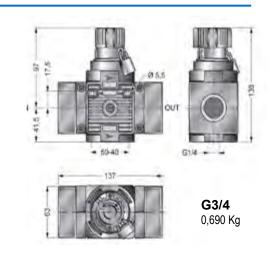

Utilisé pour arrêter l'alimentation en air tout en

Utilisé lors des opérations de maintenance pour empêcher le système d'être accidentellement sous

Fixation, réservoir et évacuation des condensats : voir F M34 (page 350).

Valve à 3 voies V3 M34

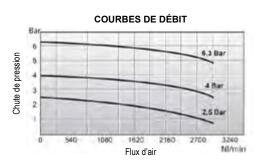


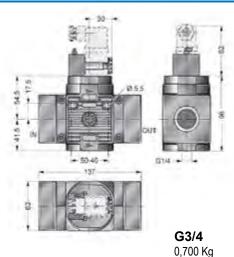

protégeant le circuit.

pression.

Raccord d'évacuation : G1/4 BSP. L'appareil est livré avec un verrou.

Vanne d'arrêt SV M34

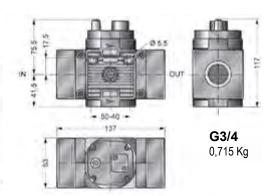



Disponible avec une télécommande électrique (E1S télécommande version) pneumatique ou (PP version).

Raccord d'évacuation : G1/4 BSP.

Pression minimum autorisée : 3 Bar (40 Psi)

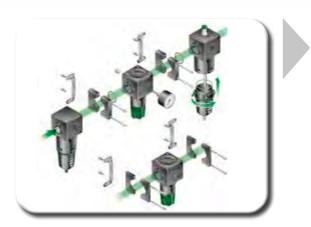
Pression maximum de service : 10 Bar (145 Psi) .


Valve à démarrage progressif AVP M34 APC

- Avant de délivrer une pression maximale, l'air est autorisé à circuler dans la soupape de démarrage lentement autour du circuit jusqu'à atteindre 60% de pression.
- Raccord d'évacuation : G1/4 BSP.
- Utilise un régulateur de débit pour établir la pression.
- Fourchette de pression : 3 ÷10 Bar (40 ÷ 145 Psi).

COURBES DE DÉBIT 6,3 Ba Chute de pression 4 Bar 2.5 Har NI/min Flux d'air

Ensemble FR+L M34..


Filtre régulateur + unité de lubrification

Unité intégrée pour traitement de l'air assemblée avec :

- FR M34 .. Filtre régulateur
- L M34 .. Graisseur.
- Degré de filtration: 5 microns ou 20 microns (standard).
 - Viscosité d'huile recommandée : ISO VG32.
- Pression de service maximale : 16 Bar (230 Psi).

Lignes modulaires

Série M10 - G1

Connexions: G1

Corps et bol de garde : Verre de polyamide renforcé

Bol: Polyamide trempé transparent **Température ambiante**: +5°C à +50°C

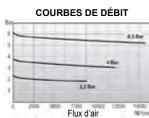
Connexions de jauges : G1/8 Pression d'entrée maxi : 16 bar

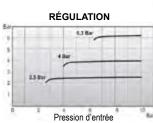
Caractéristiques techniques

La série M10 est conçue pour des débits élevés. Elle offre une gamme complète de composants pour le traitement de l'air.

La gamme couvre:

- filtres avec différents niveaux de poussière et d'extraction de condensat,
- régulateurs de pression jusqu'à 12 bar et deux graisseurs standards.

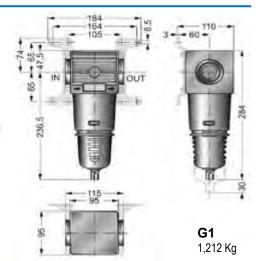

Des groupes complets de traitement de l'air sont disponibles, tels que :


- filtre régulateur + lubrificateur,
- filtre + régulateur + lubrificateur.

Régulateur R M10 ..

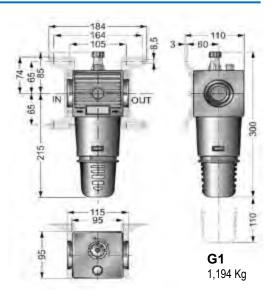
- Membrane roulante.
- Peut être fixé au mur en utilisant les trous relatif avec bague pour l'assemblage de panneau.
- Bouton de sécurité verrouillable.
- Pression maximale autorisée: 0 ÷ 8 Bar (standard) ou 0 ÷ 12 Bar.
- Fonction de surpression intégrée.

1,721 Kg


Filtre F M10 ..

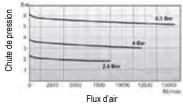
- Degré de filtration : 5 microns or 20 microns (standard).
- Pression d'entrée max.: 16 Bar.
- Réservoir 100cc incluant une connexion rapide et sécurisée.
- Drainage du condensat : manuel ou semi-automatique dans la version intégrale ou avec flotteur pour la version automatique (SA).

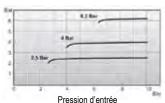
COURBES DE DÉBIT

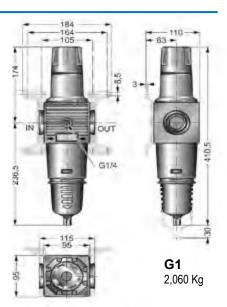

Lubrificateur L M10...

- Séparateur de brouillard, débit d'air à pression constante, et garantit un taux de pression bas.
- Peut être fixé au mur en utilisant les trous relatifs.
- Réservoir de 140cc garantissant une grande sécurité
- Viscosité d'huile recommandée : ISO VG32
- Pression maximale: 12 bar

COURBES DE DÉBIT

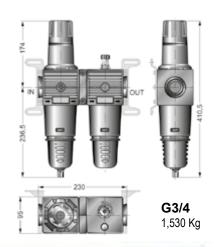



Filtre Régulateur FR M10 ..



- Membrane roulante.
- Bouton de sécurité verrouillable.
- Décharge de surpression incorporée.
- Degré de filtration : 5 microns ou 20 microns (standard).
- Plages de pression : 0 à 8 bar (standard) ou de 0 à
- Fixation, bol et évacuation des condensats : voir F M10 (page 353).

RÉGULATION COURBES DE DÉBIT



Ensemble FR+L M10..

Filtre régulateur + unité de lubrification

- Unité intégrée pour traitement de l'air assemblée avec :
- FR M10 .. Filtre régulateur
 - L M10 .. Graisseur.
- Degré de filtration: 5 microns ou 20 microns (standard).
- Viscosité d'huile recommandée : ISO VG32.
- Pression de service maximale: 16 bar.

Filtres pour air comprimé

HEF - MDA

Codes	L/Min	m³ /h			С		Bar	Kg
73.HEF 047	8.500	510	125	465	33	1-1/2"	16	3,9
73.HEF 070	13.000	780	125	644	33	1-1/2"	16	5,4
73.HEF 094	16.667	1.000	163	689	48	2"	16	8
73.HEF 150	25.000	1.500	163	935	48	2"	16	10,5

- Les capacités se réfèrent à air FAD 20°C/1 bar A et pression de service 7 bar(g).
- Température maxi en entrée 60°C, température min. en entrée 1°C.
- Connexion pour décharge de condensation 1/2".

Qualité de l'air

	Degré de filtration	Libre de particules solides et liquides de dimension supérieure à	Huile résiduelle
Préfiltre	Р	3 microns	1
Préfiltre à coalescence	M	1 micron	0,5 mg/m ³
Premire a coalescence	S	0.01 micron	0,01 mg/m³
Filtres à charbon actif	А	air inodore sans vapeurs d'huile	0,03 mg/m³

SOMMAIRE - COMPRESSEURS

«Série Top» : Haut rendement non lubrifié, page 358

«Série Hobby» : Compresseurs coaxiaux, page 362

«Compresseurs silencieux à air», page 363

«Compresseurs à air avec transmission à courroie», page 364

«Compresseurs verticaux avec transmission à courroie», page 370

«Compresseurs à pieds fixes avec transmission à courroie», page 372

«Compresseurs TANDEM», page 373

«Compresseurs sur base», page 375

«Compresseurs à moteur thermique», page 376

«Compresseurs silencieux», page 379

«Compresseurs à vis», page 383

«Compresseurs à vis sur réservoir», page 387

«Compresseurs à vis sur réservoir avec sécheur», page 388

«Compresseurs à vis avec convertisseur de fréquence», page 389

«Dessicateurs cycle frigorifique», page 394

Compresseurs pneumatiques

Les compresseurs pneumatiques Air Pack génèrent de l'air comprimé nécessaire pour engager des prises de force pneumatiques, ainsi que, dans l'une des trois versions disponibles, la vanne de basculement pneumatique.

De cette manière, il est possible d'installer les prises de mouvement pneumatiques sur un véhicule, entraînant une amélioration de la fiabilité de l'ensemble du système.

Le cœur du système du compresseur AirPack est un compresseur à haut rendement.

Versions disponibles

100.019.00604	pour contrôler uniquement la prise de mouvement 12V
100.019.00622	pour contrôler la prise de mouvement et la valve de basculement électrique 12V
100.019.00631	pour contrôler la prise de mouvement et la valve de basculement pneumatique 12V
100.019.00659	pour contrôler uniquement la prise de mouvement 24V
100.019.00668	pour contrôler la prise de mouvement et la valve de basculement électrique 24V
100.019.00677	pour contrôler la prise de mouvement et la valve de basculement pneumatique 24V

Caractéristiques techniques

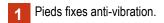
Caractéristiques	Unité	Min	Тур	Max		
Débit avec une pression de 5 bar	dm3/min	10	11	12		
Cylindrée	cm3/min		5.5			
Vitesse du moteur à 5.8 bar	T/min	2300				
Pression de fonctionnement maxi	bar		9			
Pression de déclenchement de l'interrupteur de pression	bar	5	-	6.2		
Niveau sonore (à une distance de 1 mètre)		65	68	70		
Tension d'alimentation	V		12			
Courant absorbé	Α	8	9	10		
Délai pour atteindre 5.8 bar	S	0.4	0.55	0.7		
Temps moyen d'engagement	S	0.3	0.4	0.5		
Dimensions hors tout	mm	2	260 × 75 × 240			
Poids	Kg		2.65			

Performances et valeurs données sont destinées à être validées et GARANTIES uniquement si le produit est utilisé conjointement avec la prise de mouvement. OMFB IPN9.

Conditions de fonctionnement

Caractéristiques	Unité	Min	Тур	Max
Température	°C	-25	-	90
Humidité relative	-	-	60%	-
Durée de fonctionnement continu	S		60	
Durée de vie	-		10%	
Temps de répétition de cycle maximum	s			

Compresseurs pneumatiques


Série Top: Haut rendement non lubrifié

- Compresseurs électriques professionnels à sec.
- Modèles de 1 ou 2 cylindres pour une très haute performance et longue durée de service.
- Directement relié au moteur pour un meilleur rendement.
- Monophasé.

Qualité de pression avec réducteur raccord rapide EURO.

Pieds équipés sur caoutchouc.

_																
Références	Code	Litres	L/ mn	CFM	Min-1	Cy- lindres	Stages	Bar	1Psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.TOP125.PF M	TA001	15	115	4	1.450	1	1	10	145	0,7	1	230	50	69	60x26x60	27
70.TOP240.24.CAR M	TA 002	24	220	7,8	2.850	1	1	10	145	1,1	1,5	230	50	75	65x32x59	28
70.TOP250.20V.CAR M	TA 003	20	230	8,1	1.450	2	1	10	145	1,1	1,5	230	50	75	50x42x82	33
70.TOP250.24.CAR M	TA 004	24	230	8,1	1.450	2	1	10	145	1,1	1,5	230	50	75	65x32x59	30
70.TOP250.50.CAR M	TA 005	50	230	8,1	1.450	2	1	10	145	1,1	1,5	230	50	75	85x35x65	38
70.TOP500.24.CAR M	TA 115	24	460	16,2	2.850	2	1	10	145	2,5	2,5	230	50	75	65x32x59	31
70.TOP500.50.CAR M	TA 110	50	460	16,2	2.850	2	1	10	145	2,5	2,5	230	50	75	85x35x65	39
70.TOP500.20V.CAR M	TA 100	20	460	16,2	2.850	2	1	10	145	2,5	2,5	230	50	75	50x42x82	34

Tensions d'alimentation électrique et fabrications spéciales sur demande.

TOP300/TWIN

TOP300/20V

TOP300/24

TOP350/100/CAR/M

- 1 Excellente maniabilité pour des mouvements faciles.
- 2 Roues pneumatiques gonflables.

						0.000									3000000	
Références	Code	Litres	L/ mn	CFM	Min-1	Cy- lindres	Stages	Bar	1Psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.TOP300.TWIN CAR M	TA 007	11+11	280	9,8	1.450	3	1	10	145	1,5	2	230	50	69	73x60x65	49
70.TOP300.20V CAR M	TA 006	20	280	9,8	1.450	3	1	10	145	1,5	2	230	50	69	50x42x82	38
70.TOP300.24 CAR M	TA 008	24	280	9,8	1.450	3	1	10	145	1,5	2	230	50	69	65x31x60	36
70.TOP300.50 CAR M	TA 009	50	280	9,8	1.450	3	1	10	145	1,5	2	230	50	69	85x35x66	46
70.TOP300.100 CAR M	TA 010	100	280	9,8	1.450	3	1	10	145	1,5	2	230	50	69	115x37x70	58
70.TOP350.100 CAR M	TA 118	100	332	11,7	1.450	3	1	10	145	2,2	3	230	50	75	115x37x70	62
70.TOP700.100 CAR T	TA 119	100	640	23,4	2.850	3	1	10	145	3	4	400	50	75	115x37x70	62

TOP300/100/DRY-DENTAL**

TOP300/100/TD DRY

** Sécheur avec radiateur optionnel sur demande.

TOP300/100/TD

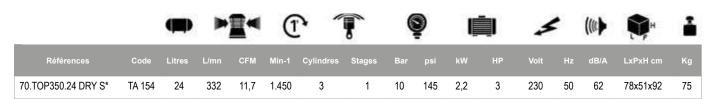
1 Absorption sèche grâce au radiateur.

Séchoir à absorption.

Références	Code	Litres	L/ mn	CFM	Min- 1	Cy- lindres	Sta- ges	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.TOP300.100 DRY*	TA 120	100	280	9,8	1.450	3	1	10	145	1,5	2	230	50	69	115x37x70	62
70.TOP300/100/TD	TA 011	100	560	19,8	1.450	3x2	1	10	145	1,5+1,5	2+2	230	50	70	115x37x70	78
70.TOP300/100/TD DRY*	TA011ES	100	560	19,8	1.450	3x2	1	10	145	1,5+1,5	2+2	230	50	70	115x37x70	78
70.TOP300/200/TD	TA 012	200	560	19,8	1.450	3x2	1	10	145	1,5+1,5	2+2	400	50	70	145x45x80	102
70.TOP300/270/3TD	TA 013	270	840	29,6	1.450	3x3	1	10	145	1,5x3	2x3	400	50	72	150x50x90	140

^{*}avec sécheur à absorption.

TOP350/24/DRY/S


Double système de verrouillage

Ventilateur de refroidissement électrique

TOP TRICYLINDRIQUE

^{*}Avec sécheur à absorption avec radiateur.

Série Hobby : Compresseurs coaxiaux

- Compresseurs coaxiaux lubrifiés.
- Utilisant 1 et 2 cylindres.
- Monophasé.
- Avec réducteur de pression.

GS7/6/PF/M

GS9/24/CAR/M

GS9/50/CAR/M

Grands pieds de support pour une meilleure stabilité tout en réduisant les vibrations.

GS15/50/CAR/M

Poignée pratique supplémentaire pour en faciliter le transport.

Références	Code	Litres	litres/ mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	Volt		dB/A	LxPxH cm	Kg
70.GS7.6 PF M	AD 006	6	205	7,1	2.850	1	1	8	116	1,1	1,5	230	50	76	50x23x52	28
70.GS9.6 PF M	AD 120	6	240	8,5	2.850	1	1	8	116	1,5	2	230	50	78	53x21x52	19
70.GS9.24.CAR M	AD 014	24	240	8,4	2.850	1	1	8	116	1,5	2	230	50	78	60x27,5x59	25
70.GS9.50 CAR M	AD 018	50	240	8,4	2.850	1	1	8	116	1,5	2	230	50	78	83x38x72	36
70.GS11.24 CAR M	AD 015	24	260	9,1	2.850	1	1	8	116	1,8	2,5	230	50	79	60x27,5x59	25
70.GS11.50 CAR M	AD 019	50	260	9,1	2.850	1	1	8	116	1,8	2,5	230	50	79	83x38x72	37
70.GS13.100 CAR M	AD 021	100	300	11	2.850	1	1	8	116	2,2	3	230	50	79	107x39x80	52
70.GS1550.CAR M	AD 020	50	370	13	2.850	2	1	8	116	2,2	3	230	50	79	75x42x67	40

Compresseurs silencieux à air

- Electrocompresseurs monophasés.
- Très silencieux pour capacité réduite.

SIL COMP 50/100

SIL COMP FIX 50/9

SIL COMP CAR 100

SIL COMP FIX 50/24

1 Version à ailettes.

Réducteur de pression.

Références	Code	Litres	L/mn	CFM	Bar	psi	kW	HP	Volt	Hz	dB/A	LxPxH cm	Kg
70.SIL COMP FIX 50/6*	SA 001	6	50	1,8	8	116	0,340	0,450	230	50	40	30x30x44	19
70.SIL COMP FIX 50/9*	SA 002	9	50	1,8	8	116	0,340	0,450	230	50	40	32x32x44	20
70.SIL COMP FIX 50/15*	SA 003	15	50	1,8	8	116	0,340	0,450	230	50	40	40x40x47	22
70.SIL COMP FIX 50/24*	SA 004	24	50	1,8	8	116	0,340	0,450	230	50	40	40x40x60	25
70.SIL COMP CAR 100/24*	SA 005	24	100	3,6	8	116	0,680	0,900	230	50	40	77x37x61	40
70.SIL COMP CAR 100/50*	SA 006	50	100	3,6	8	116	0,680	0,900	230	50	40	113x38x63	50

^{*} Version à ailettes optionelle sur demande.

Compresseurs à air avec transmission à courroie

- Tous les compresseurs sont équipés de cylindres en fonte et plaques soupapes en acier.
- Compresseurs sur chariot et à pieds fixes, transmission à courroie, monophasés ou triphasés.
- Seulement les compresseurs sur chariot sont pourvus de réducteur de pression.

Série 11 + 11

1 Châssis robuste avec panneau de soutien.

Réducteur de pression.

Roues pneumatiques gonflables, Large base de soutien pour une bonne stabilité sur les terrains accidentés.

GS17 TWIN

Références	Code	Litres	L/mn	CFM	Min-1	Cy- lindres	Stages	Bar	psi	kW	HP	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS17.TWIN/CAR M	AF 001	11 + 11	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	73x60x65	53
70.GS17 TWIN CAR T	AF 002	11 + 11	320	11,6	1.550	2	1	10	145	2,2	3	400	50	74	73x60x65	53
70.GS25 TWIN CAR T	AF 155	11 + 11	500	17,6	1.450	2	1	10	145	3	4	400	50	78	73x60x65	57
70.GS28 TWIN CAR T	AF 293	11 + 11	550	19,4	1.450	2	2	11	159	3	4	400	50	78	73x60x65	65
70.GS35 TWIN CAR T	AF 312	11 + 11	600	21,1	1.450	2	2	11	159	4	5,5	400	50	78	73x60x65	70

Série 24/100

GS12/50/250/CAR/M

GS12/100/250/CAR/M

1 Collecteur de froid.

Double sortie pour une meilleure sécurité.

Roues pivotantes.

Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	Volt		dB/A	LxPxH cm	Kg
70.GS12/24/250/CAR/M	AF 004	24	250	8,8	1.250	2	1	10	145	1,5	2	230	50	73	80x35x69	41
70.GS12/50/250/CAR/M	AF 006	50	250	8,8	1.250	2	1	10	145	1,5	2	230	50	72	90x35x72	45
70.GS12/50/250/CAR/T	AF 007	50	250	8,8	1.250	2	1	10	145	1,5	2	400	50	72	90x35x72	45
70.GS12/100/250/CAR/M	AF 008	100	250	8,8	1.250	2	1	10	145	1,5	2	230	50	72	115x37x80	62
70.GS12/100/250/CAR/T	AF 009	100	250	8,8	1.250	2	1	10	145	1,5	2	400	50	72	115x37x80	62
70.GS17/100/320/CAR/M	AF 010	100	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	115x37x80	65
70.GS17/100/330/CAR/T	AF 011	100	330	11,6	1.550	2	1	10	145	2,2	3	400	50	74	115x37x80	65
70.GS25/100/380/CAR/M	AF 127	100	360	12,7	1.100	2	1	10	145	2,2	3	230	50	76	115x37x82	67
70.GS25/100/380/CAR/T	AF 128	100	360	12,7	1.100	2	1	10	145	2,2	3	400	50	76	115x37x82	67
70.GS25/100/500/CAR/T	AF 134	100	500	17,6	1.450	2	1	10	145	3	4	400	50	78	115x37x82	69

Série 24/200 «E»

GS12E/100/250/CAR/M

GS17E/200/330/CAR/T

1 Collecteur de froid.

Double sortie pour une meilleure sécurité.

Roues pivotantes.

Références	Code	Litres	L/mn	CFM	Min-1	Cy- lindres	Stages	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS12E/24/250/CAR/M	AF 004E	24	250	8,8	1.250	2	1	10	145	1,5	2	230	50	73	80x35x69	41
70.GS12E/50/250/CAR/M	AF 006E	50	250	8,8	1.250	2	1	10	145	1,5	2	230	50	72	90x35x72	45
70.GS12E/50/250/CAR/T	AF 007E	50	250	8,8	1.250	2	1	10	145	1,5	2	400	50	72	90x35x72	45
70.GS12E/100/250/CAR/M	AF 008E	100	250	8,8	1.250	2	1	10	145	1,5	2	230	50	72	115x37x80	62
70.GS12E/100/250/CAR/T	AF 009E	100	250	8,8	1.250	2	1	10	145	1,5	2	400	50	72	115x37x80	62
70.GS17E/100/320/CAR/M	AF 010E	100	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	115x37x80	65
70.GS17E/100/330/CAR/T	AF 011E	100	330	11,6	1.550	2	1	10	145	2,2	3	400	50	74	115x37x80	65
70.GS17E/150/320/CAR/M	AF 014E	150	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	135x45x98	78
70.GS17E/150/330/CAR/T	AF 015E	150	330	11,6	1.550	2	1	10	145	2,2	3	400	50	74	135x45x98	78
70.GS17E/200/320/CAR/M	AF 019E	200	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	150x50x103	88
70.GS17E/200/330/CAR/T	AF 020E	200	330	11,6	1.550	2	1	10	145	2,2	3	400	50	74	150x50x103	88

Série 150/200

GS17/150/330/CAR/T

Collecteur de froid.

Double sortie pour une meilleure sécurité.

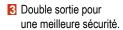
Roues pivotantes.

Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS10/150/286/CAR/M	AF 012	150	286	10,1	1.300	2	1	10	145	2,2	3	230	50	72	135x45x100	80
70.GS10/150/306/CAR/T	AF 013	150	306	10,8	1.400	2	1	10	145	2,2	3	400	50	72	135x45x100	80
70.GS17/150/320/CAR/M	AF 014	150	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	135x45x98	78
70.GS17/150/330/CAR/T	AF 015	150	330	11,6	1.550	2	1	10	145	2,2	3	400	50	74	135x45x98	78
70.GS10/200/286/CAR/M	AF 017	200	286	10,1	1.300	2	1	10	145	2,2	3	230	50	72	150x50x105	90
70.GS10/200/306/CAR/T	AF 018	200	306	10,8	1.400	2	1	10	145	2,2	3	400	50	72	150x50x105	90
70.GS17/200/320/CAR/M	AF 019	200	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	150x50x103	88
70.GS17/200/330/CAR/T	AF 020	200	330	11,6	1.550	2	1	10	145	2,2	3	400	50	74	150x50x103	88

Série 200

GS28/200/500/CAR/T

GS25/200/500/CAR/T



- 1 Collecteur de froid.
- 2 Double carter et courroie en métal.

Roues pivotantes.

Références	Code	Litres	L/mn	CFM	Min-1	Cy- lindres	Stages	Bar	1Psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS25/200/500/CAR/T	AF 023	200	500	17,6	1.450	2	1	10	145	3	4	400	50	78	150x50x105	100
70.GS28/200/500/CAR/T	AF 024	200	500	17,6	1.200	2	2	11	159	3	4	400	50	76	150x50x115	110
70.GS35/200/600/CAR/T	AF 025	200	600	21,1	1.450	2	2	11	159	4	5,5	400	50	78	150x50x115	128
70.GS37/200/660/CAR/T	AF 261	200	600	23,5	1.450	2	2	11	159	4	5,5	400	50	78	150x50x118	132

Série 270

GS35/270/600/CAR/T

Double tête de refroidissement pour un meilleur rendement.

Protection de l'interrupteur de pression éloignée du moteur électrique .

Références	Code	Litres	L/ mn	CFM	Min-1	Cylindres	Stages	Bar	1Psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS25/270/500/CAR/T	AF 026	270	500	17,6	1.450	2	1	10	145	3	4	400	50	78	155x58x105	128
70.GS28/270/500/CAR/T	AF 027	270	500	17,6	1.200	2	2	11	159	3	4	400	50	76	155x58x120	132
70.GS35/270/600/CAR/T	AF 028	270	600	21,1	1.450	2	2	11	159	4	5,5	400	50	78	155x58x120	160
70.GS37/270/660/CAR/T	AF 029	270	600	23,5	1.450	2	2	11	159	4	5,5	400	50	78	155x58x122	166
70.GS38/270/650/CAR/T	AF 030	270	655	23	900	2	2	11	159	4	5,5	400	50	76	155x58x125	180
70.GS38/270/850/CAR/T	AF 031	270	850	30	1.150	2	2	11	159	5,5	7,5	400	50	76	155x58x125	188

Compresseurs verticaux avec transmission à courroie

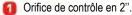
- Compresseurs en version verticale avec encombrement réduit.

Série 24/100

GS35/100/600/VER/T GS12/100/250/VER/M GS35/100/600/VER/B/T

Equipé de roues pour faciliter la manipulation.

			_	•	_	0		=						0.2	1-6	-
Références	Code	Litres	L/ mn	CFM	Min-1	Cy- lindres	Stages	Bar	1Psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS12/24/250/VER/M	AF 297	24	250	8,8	1.250	2	1	10	145	1,5	2	230	50	73	58x40x130	41
70.GS12/50/250/VER/M	AF 135	50	250	8,8	1.250	2	1	10	145	1,5	2	230	50	72	58x40x130	45
70.GS12/50/250/VER/T	AF 136	50	250	8,8	1.250	2	1	10	145	1,5	2	400	50	72	58x43x152	45
70.GS12/100/250/VER/M	AF 137	100	250	8,8	1.250	2	1	10	145	1,5	2	230	50	72	58x43x152	62
70.GS12/100/250/VER/T	AF 138	100	250	8,8	1.250	2	1	10	145	1,5	2	400	50	72	58x43x152	62
70.GS17/100/320/VER/M	AF 174	100	320	11,3	1.500	2	1	10	145	2,2	3	230	50	74	58x43x152	65
70.GS17/100/330/VER/T	AF 182	100	330	11,6	1.550	2	1	10	145	2,2	3	400	50	74	58x43x152	65
70.GS25/100/500/VER/T	AF 234	100	500	17,6	1.450	2	1	10	145	3	4	400	50	78	70x63x170	80
70.GS35/100/600/VER/T	AF 188	100	600	21,1	1.450	2	2	11	159	4	5,5	400	50	78	70x63x175	105
70.GS12/100/250/VER/B/M	AF 137 B	100	250	8,8	1.250	2	1	10	145	1,5	2	400	50	72	60x50x117	62
70.GS12/100/250/VER/B/T	AF 138 B	100	250	8,8	1.250	2	1	10	145	1,5	2	230	50	72	60x50x117	62
70.GS17/100/320/VER/B/M	AF 174 B	100	320	8,8	1.500	2	1	10	145	2,2	3	230	50	72	60x50x117	65
70.GS17/100/320/VER/B/T	AF 182 B	100	330	11,3	1.550	2	1	10	145	2,2	3	400	50	72	60x50x117	65
70.GS25/100/500/VER/B/T	AF 234 B	100	500	17,6	1.450	2	1	10	145	3	4	400	50	78	73x50x133	80
70.GS35/100/600/VER/B/T	AF 188 B	100	600	21,1	1.450	2	2	11	159	4	5,5	400	50	78	73x50x133	105


Série 1000

Compresseurs de grosse cylindrée avec 4 cylindres en forme de V, collecteurs de refroidissement intermédiaires et finaux, bas régime.

GS37/270/600/VER/T

Diamètre de tuyau important pour une meilleure performance.

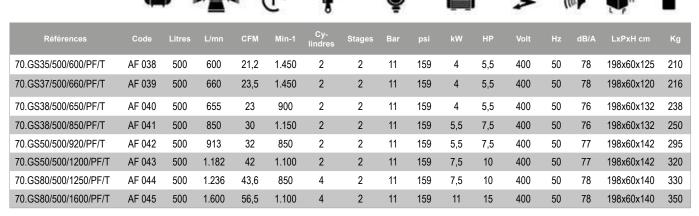
Évacuation de la condensation par un robinet à boisseau sphérique.

Pied anti-vibration.

Références	Code	Litres	L/mn	CFM	Min-1	Cy- lindres	Stages	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS80/1000/1600/PF/T	AF 046	1.000	1.600	56,5	1.100	4	2	11	159	11	15	400	50	78	230x80x170	420
70.GS90/1000/1850/PF/T	AF 047	1.000	1.826	64,5	850	4	2	11	159	11	15	400	50	79	230x80x170	480
70.GS90/1000/2400/PF/T	AF 048	1.000	2.365	83,5	1.100	4	2	11	159	15	20	400	50	79	230x80x177	500

Compresseurs à pieds fixes avec transmission à courroie

GS38/500/850/PF/T



- Double-tête de refroidissement améliore la performance.
- Boîtier robuste, Carter de courroie en métal.

Pieds fixes anti-vibrations.

Majoration de prix pour 15 bar.

Démarrage étoile/triangle.

Compresseurs TANDEM

- Electrocompresseurs à pieds fixes en version tandem avec transmission à courroie, triphasé.
- Tous les compresseurs TANDEM sont pourvus de boites de contrôle électriques temporisées selon les normes C.E.I.

Série 500

GS38/500/TD

Boitier de commande

Double système de refroidissement pour une rendement optimal.

Pieds fixes anti-vibrations.

Références	Code	Litres	L/mn	CFM	Min-1	Cy- lindres	Stages	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS25/500/1080/TD	AG 001	500	1.000	35,2	1.450	2+2	1	10	145	3+3	4+4	400	50	79	198x60x112	270
70.GS28/500/1000/TD	AG 002	500	1.000	35,2	1.250	2+2	2	11	159	3+3	4+4	400	50	77	198x60x125	300
70.GS35/500/1200/TD	AG 003	500	1.200	42,4	1.450	2+2	2	11	159	4+4	5,5+5,5	400	50	79	198x60x125	310
70.GS37/500/1320/TD	AG 004	500	1.320	47	1.450	2+2	2	11	159	4+4	5,5+5,5	400	50	79	198x60x125	325
70.GS38/500/1300/TD	AG 005	500	1.300	46	900	2+2	2	11	159	4+4	5,5+5,5	400	50	77	198x60x132	360
70.GS38/500/1700/TD	AG 006	500	1.700	60	1.150	2+2	2	11	159	5,5+5,5	7,5+7,5	400	50	78	198x60x132	380

Série 1000

GS50/1000/TD

Boitier de commande

Double système de refroidissement pour un rendement optimal.

Pieds fixes anti-vibrations.

Références	Code	Litres	L/mn	CFM	Min-1	Cy- lindres	Stages	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS38/1000/1700/TD	AG 007	1000	1.700	60	1.150	2+2	2	11	159	5,5+5,5	7,5+7,5	400	50	78	230x80x155	450
70.GS50/1000/1850/TD	AG 008	1000	1.826	64,5	850	2+2	2	11	159	5,5+5,5	7,5+7,5	400	50	79	230x80x170	560
70.GS50/1000/2400/TD	AG 009	1000	2.365	83,5	1.100	2+2	2	11	159	7,5+7,5	10+10	400	50	79	230x80x170	580
70.GS80/1000/3200/TD	AG 010	1000	3.200	113	1.100	4+4	2	11	159	11+11	15+15	400	50	80	230x80x168	620

Compresseurs sur base

- Compresseurs sur bases avec possibilités d'accouplement multiple, avec des réservoirs verticaux de différentes capacités. Triphasé
- Tous les compresseurs sont munis d'un tuyau de refoulement avec une soupape de retenue et tampons antivibrants.

GS35/600/B

Base pour un montage facile du réservoir.

GS80/3/B*

* Version avec réservoir et installation électrique disponible pour tous les modèles.

Facile à installer : connecter simplement à une installation existante. Prix sur demande.

				_		_	•		-					S P	
Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	HP	Volt	Hz	LxPxH cm	Kg
70.GS35/600/B	AH 001	*	600	21,2	1.450	2	2	11	159	4	5,5	400	50	70x40x50	53
70.GS37/600/B	AH 002	*	660	23,5	1.450	2	2	11	159	4	5,5	400	50	70x40x50	58
70.GS38/650/B	AH 003	*	650	23	900	2	2	11	159	4	5,5	400	50	70x42x60	65
70.GS38/850/B	AH 004	*	850	30	1.150	2	2	11	159	5,5	7,5	400	50	70x42x60	69
70.GS50/1200/B	AH 005	*	1.182	42	1.100	2	2	11	159	7,5	10	400	50	100x50x70	110
70.GS80/1600/B	AH 006	*	1.600	56,5	1.100	4	2	11	159	11	15	400	50	110x60x70	125
70.GS90/1850/B	AH 007	*	1.850	64,5	850	4	2	11	159	11	15	400	50	130x65x80	210
70.GS90/2400/B	AH 008	*	2.400	83,5	1.100	4	2	11	159	15	20	400	50	130x60x80	220
70.GS50/2400/TDB	AH 009	*	2.365	83,5	1.100	2+2	2	11	159	7,5+7,5	10+10	400	50	100x110x70	220
70.GS80/3200/TDB	AH 010	*	3.200	113	1.100	4+4	2	11	159	11+11	15+15	400	50	110x130x80	250
70.GS90/3700/TDB	AH 011	*	3.700	129	850	4+4	2	11	159	11+11	15+15	400	50	130x150x80	420
70.GS90/4800/TDB	AH 012	*	4.800	167	1.100	4+4	2	11	159	15+15	20+20	400	50	130x150x80	440

* sur demande.

Compresseurs à moteur thermique

- Moteurs essence ROBIN SUBARU.
- Moteurs DIESEL HATZ.
- Moteurs à 4 temps à essence ou diesel, fonctionnement à vide avec disjoncteur pneumatique.

GS38/B/DIESEL

B7000/B/MOTO

GS38/B/MOTO

Large base de soutien complétée d'un système anti-vibrations.

Références	Code	Litres	litres/ mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	dB/A	LxPxH cm	Kg
70.GS38/B/MOTO	AI 001	*	650	23	900	2	2	11	159	6,7	9	79	70x45x70	69
70.GS38/B/DIESEL	AI 002	*	650	23	900	2	2	11	159	5,5	7,5	80	70x45x70	78
70.GS50/B/MOTO	AI 003	*	1.000	35.3	900	2	2	11	159	10	13,5	79	100x50x85	110
70.GS50/B/DIESEL	AI 004	*	1.000	35.3	900	2	2	11	159	7,5	10	83	100x50x85	118
70.B7000/B/MOTO	AI 153	3	1.200	42.3	1.200	2	2	11	159	10	14	83	100x60x82	95

- * sur demande.
- Démarrage à lanceur standard.
- Démarrage électrique optionnel sur demande.

GS25/100/VER/B/MOTO

GS17/TWIN/MOTO

TOP700/20V/MOTO

Poignées confortables

Roues pour un déplacement facilité.

Groupes FRL avec coupleurs rapides.

			▶		P		(9				((0)	H	i
Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	dB/A	LxPxH cm	Kg
70.GS17/TWIN/MOTO	AI 018	11+11	350	12,3	1.450	2	1	10	145	4,5	6	78	73x60x70	56
70.GS25/TWIN/MOTO	AI 005	11+11	500	17,6	1.450	2	1	10	145	4,5	6	79	73x60x70	58
70.GS25/TWIN/DIESEL	AI 006	11+11	500	17,6	1.450	2	1	10	145	4	5,5	80	73x60x70	73
70.GS28/TWIN/DIESEL	AI 161	11+11	550	19,4	1.450	2	2	11	159	5	7	80	73x60x75	65
70.GS28/TWIN/MOTO	AI 152	11+11	550	19,4	1.450	2	2	11	159	5	7	80	73x60x75	65
70.GS25/100/VER/B/MOTO	AI 167	100	500	17,6	1.450	2	1	10	145	4,5	6	79	72x50x125	95
70.GS35/100/VER/B/MOTO	AI 168	100	600	21,2	1.450	2	2	11	159	5	7	80	72x50x132	100
70.GS38/100/VER/B/MOTO	AI 169	100	650	23	900	2	2	11	159	6,6	9	80	72x50x138	110
70.TOP250/20V/MOTO	AI 170	20	270	9,5	3000	1	1	9	130	3,5	4,5	80	46x47x86	38
70.TOP500/20V/MOTO	AI 139	20	550	19,4	3000	2	1	9	130	4,5	6	80	46x47x86	40
70.TOP700/20V/MOTO	AI 147	20	820	29	3000	3	1	9	130	4,5	6	80	46x47x86	41

- Démarrage à lanceur standard.
- Démarrage électrique optionnel sur demande.

Série 24/270

GS38/100/MOTO

GS25/100/MOTO

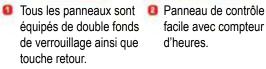
Manomètre inox Glycérine.

Valve de mise en service de grande dimension.

Roues pneumatiques.

Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	dB/A	LxPxH cm	Kg
70.GS25/24/MOTO	AI 007	24	500	17,6	1.450	2	1	10	145	4,5	6	79	80x38x75	50
70.GS25/50/MOTO	AI 110	50	500	17,6	1.450	2	1	10	145	4,5	6	79	90x35x78	60
70.GS25/100/MOTO	AI 008	100	500	17,6	1.450	2	1	10	145	4,5	6	79	115x40x80	69
70.GS25/100/DIESEL	AI 009	100	500	17,6	1.450	2	1	10	145	4	5,5	80	115x40x80	84
70.GS38/100/MOTO	AI 010	100	650	23	900	2	2	11	159	6,7	9	79	115x40x100	108
70.GS38/200/MOTO	AI 011	200	650	23	900	2	2	11	159	6,7	9	79	150x55x120	132
70.GS38/270/MOTO	AI 012	270	850	30	1.150	2	2	11	159	10	13,5	79	150x58x125	180
70.GS38/270/DIESEL	AI 013	270	650	23	900	2	2	11	159	5,5	7,5	80	155x58x125	180
70.GS50/270/MOTO	AI 014	270	1.000	35,3	900	2	2	11	159	10	13,5	79	155x58x135	210
70.GS50/270/DIESEL	AI 015	270	1.000	35,3	900	2	2	11	159	7,5	10	83	155x58x135	230

- Démarrage à lanceur standard.
- Démarrage électrique optionnel sur demande.


Compresseurs silencieux

- Compresseurs silencieux fournis avec réservoir sur amortisseurs.
- Electrovanne pour refroidissement auxiliaire (à partir de 3 kW), compteur horaire, protection moteur, monophasé ou triphasé.

GS25/500/S

- facile avec compteur d'heures.
- Double paroi de haute qualité.
- Réservoir 24 litres intégré.

Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS12/24/250/S	AL 001	24	250	8,8	1.250	2	1	10	145	1,5	2	230	50	65	78x51x92	69
70.GS17/24/300/S	AL 002	24	300	10,6	1.450	2	1	10	145	2,2	3	230	50	65	78x51x92	78
70.GS25/500/S	AL 003	24	500	17,6	1.450	2	1	10	145	3	4	400	50	67	78x51x92	110

GS50/1200/S

Tous les panneaux sont équipés d'un double fond.

Réservoir 3 litres intégré et protégé contre les vibrations.

- Deux thermostats électriques.
- Matériel de haute qualité pour une plus grande durée de vie.

Panneau de contrôle avec compteur d'heures.

Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	HP	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS28/500/S	AL 020	24	500	17,6	1.200	2	2	11	159	3	4	400	50	65	78x51x92	95
70.GS35/600/S	AL 004	3	600	21,2	1.400	2	2	11	159	4	5,5	400	50	65	90x68x100	147
70.GS37/660/S	AL 012	3	660	23,3	1.450	2	2	11	159	4	5,5	400	50	65	90x68x100	155
70.GS38/650/S	AL 005	3	650	23	900	2	2	11	159	4	5,5	400	50	68	90x68x100	168
70.GS38/850/S	AL 006	3	850	30	1.150	2	2	11	159	5,5	7,5	400	50	68	90x68x100	175
70.GS50/1200/S*	AL 007	3	1.182	42	1.100	2	2	11	159	7,5	10	400	50	68	90x68x100	220

^{*} Démarrage étoile/triangle.

Compresseurs silencieux Sur réservoir mono et bi-cylindre

GS38/850/S/270

GS28/500/S/200

Pieds fixes anti-vibration.

		300		▲~	Ų	. 7	5	Ä	0	-	Ā.	-	ē	110	1 9	•
Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	Volt		dB/A	LxPxH cm	Kg
70.GS12/24/250/S/100	AL 130	24+100	250	8,8	1.250	2	1	10	145	1,5	2	230	50	65	122x51x123	103
70.GS17/24/320/S/100	AL 131	24+100	320	10,6	1.450	2	1	10	145	2,2	3	230	50	65	122x51x123	107
70.GS25/500/S/100	AL 132	24+100	500	17,6	1.450	2	1	10	145	3	4	400	50	67	122x51x123	125
70.GS28/500/S/100	AL 117	24+100	500	17,6	1.450	2	2	11	159	3	4	400	50	67	122x51x123	130
70.GS25/500/S/200	AL 160	24+200	500	17,6	1.450	2	1	10	145	3	4	400	50	67	150x51x145	155
70.GS28/500/S/200	AL 161	24+200	500	17,6	1.450	2	2	11	159	3	4	400	50	67	150x51x145	160
70.GS35/600/S/270	AL 133	270	600	21,2	1.450	2	2	11	159	4	5,5	400	50	65	152x62x153	218
70.GS38/650//S/270	AL 134	270	650	23	900	2	2	11	159	4	5,5	400	50	68	152x62x153	239
70.GS38/850/S/270	AL 135	270	850	30	1.150	2	2	11	159	5,5	7,5	400	50	68	152x62x153	246
70.GS50/1200/S/270 *	AL 136	270	1.182	42	1.100	2	2	11	159	7,5	10	400	50	68	152x62x153	291
70.GS35/600/S/500	AL 137	500	600	21,2	1.450	2	2	11	159	4	5,5	400	50	65	200x62x165	287
70.GS38/650/S/500	AL 138	500	650	23	900	2	2	11	159	4	5,5	400	50	68	200x62x165	308
70.GS38/850/S/500	AL 139	500	850	30	1150	2	2	11	159	5,5	7,5	400	50	68	200x62x165	315
70.GS50/1200/S/500 *	AL 140	500	1.182	42	1100	2	2	11	159	7,5	10	400	50	68	200x62x165	360

Tensions d'alimentation électrique et fabrications spéciales sur demande.

* Démarrage étoile/triangle.

Compresseurs silencieux

Sur réservoir mono et bi-cylindre avec sécheur

GS25/500/S/200/ES

Le sécheur

Ventilateurs électriques de refroidissement

			•	■4	(Ţ, "	8	(3	I	2).	2	4	((())	H	Ĭ
Références	Code	Litres	L/mn	CFM	Min-1	Cylindres	Stages	Bar	psi	kW	НР	Volt	Hz	dB/A	LxPxH cm	Kg
70.GS25/500/S/200/ES	AL 209	24+200	500	17,6	1.450	2	1	10	145	3	4	400	50	67	150x51x147	125
70.GS28/500/S/300/ES	AL 221	300	500	17,6	1.450	2	2	11	159	3	4	400	50	67	150x51x147	130
70.GS35/600/S/300/ES	AL 210	300	600	21,2	1.450	2	2	11	159	4	5,5	400	50	65	162x62x155	218
70.GS38/650/S/300/ES	AL 211	300	650	23	900	2	2	11	159	4	5,5	400	50	68	162x62x155	239
70.GS38/850/S/300/ES	AL 207	300	850	30	1.150	2	2	11	159	5,5	7,5	400	50	68	162x62x155	246
70.GS50/1200/S/300/ES*	AL 206	300	1.182	42	1.100	2	2	11	159	7,5	10	400	50	68	162x62x155	291
70.GS35/600/S/500/ES	AL 202	500	600	21,2	1.450	2	2	11	159	4	5,5	400	50	65	200x62x165	287
70.GS38/650/S/500/ES	AL 203	500	650	23	900	2	2	11	159	4	5,5	400	50	68	200x62x165	308
70.GS38/850/S/500/ES	AL 204	500	850	30	1150	2	2	11	159	5,5	7,5	400	50	68	200x62x165	315
70.GS50/1200/S/500/ES	AL 205	500	1.182	42	1100	2	2	11	159	7,5	10	400	50	68	200x62x165	360

Tensions d'alimentation électrique et fabrications spéciales sur demande.

* Démarrage étoile/triangle.

Compresseurs à vis

Les compresseurs ont été conçus pour **fonctionner en continu** dans les conditions d'utilisation les plus sévères.

La conception modulaire, la faible consommation d'énergieet les faibles coûts d'entretien, la facilité d'installation et d'utilisation, ont fait l'objet d'une attention particulière.

Version au sol, version sur réservoir et version sur réservoir avec sécheur.

Références	Litres/ mn	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
				Démarrage	direct					
70.0055	550	19,5	8	116						
70.GSE5	500	17,6	10	145	5,5	4	66	400/50/3	140	65x60x88
				Démarrage	direct					
	780	28	8	116						
70.GSE7	680	24	10	145	7,5	5,5	66	400/50/3	150	65x60x88
	540	19	13	188						
				Démarrage ét	oile - tria	ingle				
	1060	37,5	8	116						
70.GSE10	970	34,3	10	145	10	7,5	66	400/690/3	157	65x60x88
	850	30	13	188						

Série GSR10 - GSR15

GSR 15

Corps à visser avec soupape d'admission.

Moteur électrique sur plots anti-vibrations.

Soupape.

Radiateur air/huile.

Panneau électrique.

Courroie d'entraînement Poly-V.

				(F.0)		100	- 3		5725	0.00
Références	L/mn	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
	1150	40,61	8	116						
70.GSR10	1050	37,08	10	145	10	7,5	67	400/690/3	170	95x65x103
	860	30,37	13	188						
	1650	58,26	8	116						
70.GSR15	1490	51.30	10	145	15	11	68	400/690/3	180	95x65x103
	1250	44,14	13	188						

^{*} Démarrage étoile/triangle.

Série GSR20 - GSR25 - GSR30

GSR 30

1 Système de séparation air/huile.

		W		6	<u>.</u>			((0)	*	i	H
Référ	ences	L/mn	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
		2480	87,5	8	116						
70.G	SR20	2000	70,6	10	145	20	15	68	400/690/3	300	110x80x122
		1800	63,56	13	188						
		2850	100,64	8	116						
70.G	SR25	2500	88,3	10	145	25	18,5	68	400/690/3	375	110x80x122
		2100	74,16	13	188						
		3340	117,95	8	116						
70.G	SR30	3100	109,47	10	145	30	22	68	400/690/3	390	110x80x122
		2500	88,28	13	188						

^{*} Démarrage étoile/triangle.

Série GSR40 - GSR50

GSR 40

Courroie d'entraînement Poly-V

Système de séparation air/huile

Panneau de contrôle facile à consulter.

0		\triangleleft	6				((0)	1	•	₩
Références	L/mn	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
	4800	169,6	8	116						
70.GSR40	4200	148,4	10	145	40	30	68	400/690/3	750	170x100x144
	3850	136,4	13	188						
	5700	201,4	8	116						
70.GSR50	5150	181,9	10	145	50	37	68	400/690/3	760	170x100x144
	4600	162,15	13	188						

^{*} Démarrage étoile/triangle.

Compresseurs à vis Sur réservoir

Série GSE5/300 > GSR15/500

GSE10/300

GSE15/500

Système de séparation air/huile

Courroie d'entraînement Poly-V

						(JP.157)					
Références	Litres	L/mn	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
					Démarrage	direct					
70.GSE5/300	300	550	19,5	8	116	5,5	4	66	400/50/3	210	165x60x139
70.G3L3/300	300	500	17,6	10	145						
					Démarrage	direct					
		780	28	8	116						
70.GSE7/300	300	680	24	10	145	7,5	5,5	66	400/50/3	220	165x60x139
		540	17	13	188						
					Démarrage é	toile - tria	ngle				
		1060	37,5	8	116						
70.GSE10/300	300	970	34,3	10	145	10	7,5	66	400/690/3	227	165x60x139
		850	29,3	13	188						
					Démarrage é	toile - tria	ngle				
		1060	37,5	8	116						
70.GSE10/500	500	970	34,3	10	145	10	7,5	66	400/690/3	287	190x60x151
		850	29,3	13	188						
					Démarrage é	toile - tria	ngle				
		1650	58,26	8	116	4-	4.4	•••	100/000:5	0.10	400 =0 000
70.GSR15/500	500	1490	51,3	10	145	15	11	68	400/690/3	310	190x70x200
		1250	44,14	13	188						

* Démarrage étoile/triangle.

Compresseurs à vis

Sur réservoir avec sécheur

Série GSE5 - GSE7 - GSE10 - GSE15

GSE10/300/ES

GSE15/500/ES

					10				253	550	
Références	Litres	L/mn	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
					Démarrage	e direct					
70.GSE5/300/ES	300	550	19,5	8	116	5,5	4	66	400/50/3	250	165x60x139
		500	17,6	10	145						
					Démarrag	e direct					
		780	28	8	116						
70.GSE7/300/ES	300	680	24	10	145	7,5	5,5	66	400/50/3	260	165x60x139
		540	17	13	188						
					Démarrag	e étoile-tri	angle				
		1060	37,5	8	116						
70.GSE10/300/ES	300	970	34,3	10	145	10	7,5	66	400/690/3	267	165x60x139
		850	29,3	13	188						
					Démarrage	étoile-tria	ingle				
		1060	37,5	8	116						
70.GSE10/500/ES	500	970	34,3	10	145	10	7,5	66	400/690/3	327	190x60x151
		850	29,3	13	188						
					Démarrage	étoile-tria	ngle				
		1650	58,26	8	116						
70.GSR15/500/ES	500	1490	51,3	10	145	15	11	68	400/690/3	340	190x70x200
		1250	44,14	13	188						

^{*} Démarrage étoile/triangle.

Compresseurs à vis

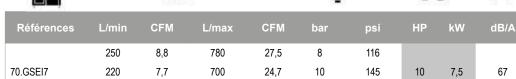
Avec convertisseur de fréquence

Les compresseurs à vis <u>à vitesse variable</u> avec variateur de la série GSRI sont construits de façon innovante et révolutionnaire par leur système intelligent de contrôle électronique de la vitesse et des pressions, dans le but de réduire <u>les coûts d'énergie et d'entretien</u>.

La série GSRI à vitesse variable est en mesure de régler la vitesse de rotation du moteur électrique et l'unité de la vis en fonction de la pression maxi de service fixée et de la consommation réelle.

Série GSEI7 - GSEI10

GSEI 10



Panneau électrique et onduleur

Gestion de la carte avec inverseur.

((6)

	250	8,8	780	27,5	8	116						
70.GSEI7	220	7,7	700	24,7	10	145	10	7,5	67	400/3	190	68x80x88
	200	7,06	680	24	13	188						
	310	10,9	1050	37,1	8	116						
70.GSEI10	290	10,24	980	34,6	10	145	15	11	68	400/3	197	68x80x88
	250	8.8	790	27.9	13	188						

^{*} Version sur réservoir et sur réservoir avec sécheur disponible sur demande.

Tensions d'alimentation électrique et fabrications spéciales sur demande.

Kg

Série GSRI10 - GSRI15

GSRI 15

- Gestion de la carte avec inverseur.
- Système de séparation air/huile.

		1			d				(((()))	*		L PH
Références	L/min	CFM	Litres/max	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
	320	11,3	1150	40,61	8	116						
70.GSRI10	295	10,42	1050	39,1	10	145	10	7,5	67	400/3	230	95x65x103
	260	9,18	860	37,31	13	188						
	350	12,3	1650	58,16	8	116						
70.GSRI15	340	12	1490	51,3	10	145	15	11	68	400/3	240	95x65x103
	285	10	1250	44,14	13	188						

^{*} Version sur réservoir et sur réservoir avec sécheur disponible sur demande.

Série GSERI20 - GSERI25 - GSERI30

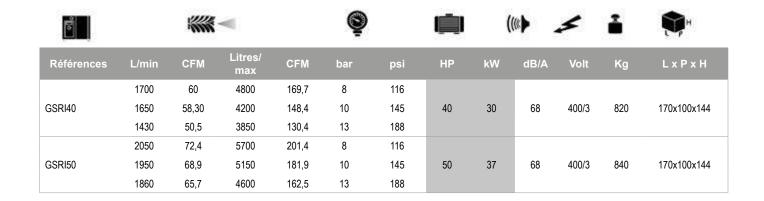
GSRI 30

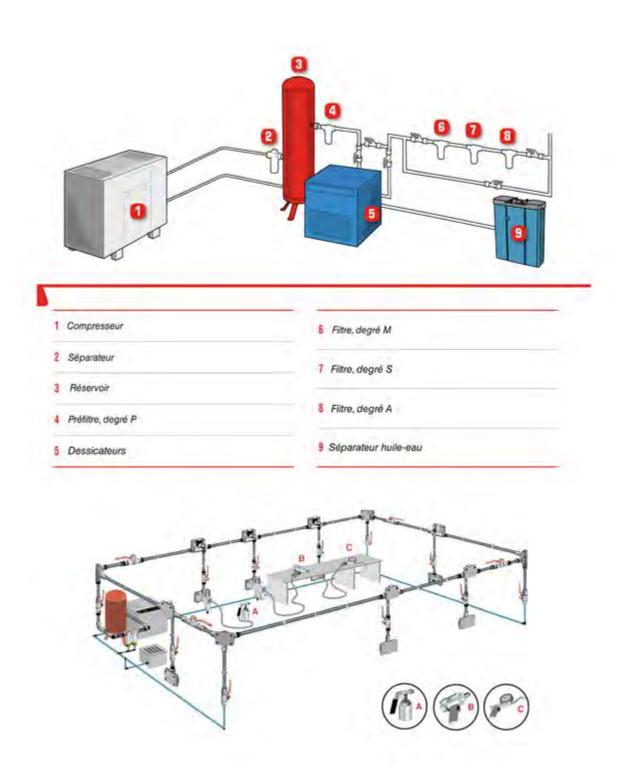
- Gestion de la carte avec inverseur.
- Ventilateur supplémentaire.
- Refroidissement par admission d'air.

ð					٩					*	i	₩ H
Références	L/min	CFM	Litres/max	CFM	bar	psi	НР	kW	dB/A	Volt	Kg	LxPxH
	670	23,67	2480	87,6	8	116						
70.GSRI10	650	22,9	2000	70,6	10	145	20	15	68	400/3	395	110x80x122
	610	21,55	1800	63,56	13	188						
	825	29,15	2850	100,64	8	116						
70.GSRI15	790	27,91	2500	88,3	10	145	25	18,5	68	400/3	415	110x80x122
	740	26,1	2100	74,16	13	188						
	870	30,7	3340	117,95	8	116						
70.GSRI30	820	28,97	3100	109,47	10	145	30	22	68	400/3	440	110x80x122
	790	27,9	2500	88,28	13	188						

Série GSRI40 - GSRI50

GSRI 50




Panneau électrique et onduleur

Gestion de la carte avec inverseur.

Dessicateurs cycle frigorifique

Equipé d'un échangeur de chaleur aluminium/cuivre pour un fonctionnement optimal, avec la technologie "Energy Saving".

Références	Code	Litres	CFM	Bar	psi	Volt	Hz	Raccords d'air	LxPxH cm	Kg
70.ES/05	AN 001	600	21,18	16	230	230	50	1/2"	25x66x46	21
70.ES/09	AN 002	900	31,8	16	230	230	50	1/2"	25x66x46	24
70.ES/12	AN 003	1.200	42,9	16	230	230	50	1/2"	25x66x46	25
70.ES/18	AN 004	1.800	63,5	16	230	230	50	3/4"	25x66x46	27
70.ES/25	AN 005	2.500	87,1	16	230	230	50	3/4"	25x66x46	29
70.ES32	AN 006	3.200	111,8	16	230	230	50	1"	25x66x46	32
70.ES/43	AN 007	4.300	151,8	16	230	230	50	1"	35x45x75	40
70.ES/50	AN 008	5.000	173,6	16	230	230	50	1"	35x45x75	41
70.ES/62	AN 009	6.200	217,7	16	230	230	50	1-1/2"	56x58x90	54
70.ES/80	AN 010	8.000	282,4	16	230	230	50	1-1/2"	56x58x90	56
70.ES/100	AN 011	10.000	353	16	230	400	50	2"	56x63x100	94
70.ES/130	AN 012	13.000	459	16	230	400	50	2"	56x63x100	96
70.ES/168	AN 013	14.000	593	16	230	400	50	2"	67x73x110	144

Réservoirs

Courant continu

Courant alternatif

Réservoir courant continu

Réservoir à air comprimé

Réservoirs courant continu

12 ou 24 Vcc

Série de réservoirs à air comprimé construits selon la directive 97/23/CE relative aux équipements sous pression.

En acier verni bleu ciel

Capacités: 0.5, 1, 2.5, 5, 7, 10, 12, 15, 24, 50, 100 litres

N° de connexions 2, 4 Fluide : air comprimé

Pression d'utilisation : 11 bar

Pression de test hydraulique: 16.5 bar

Température : de -10°C à +60°C

Filetage: Cylindrique UNI - ISO 228/1 (BSP)

Traitements externes: Vernissage par poussière epossydique RAL

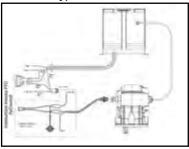
5015-110

Bien respecter le mode d'emploi fourni avec chaque réservoir

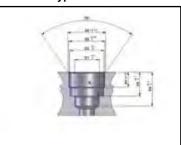
Caractéristiques techniques

Matériaux

• Fond : acier Fe PO4 • Coque : acier Fe PO4 • Tricoises : fe 45.1

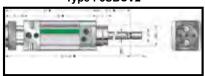

Soudures

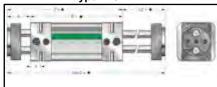
• Entre le fond et la coque : à fil


• Entre le fond et les tricoises : à l'arc submergé • Entre le fond et la coque : à l'arc submergé

Réservoirs 2 connexions

Type: 05SBCV2

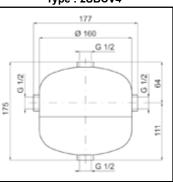

Type: 1SBCV2

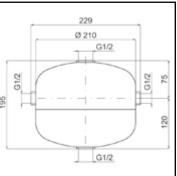

Type: 2SBCV2

Type: 5SBCV2

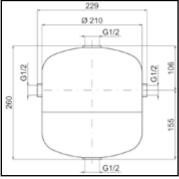
Type: 7SBCV2

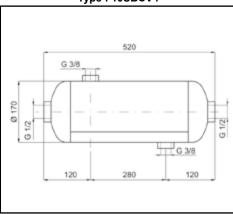
Type: 12SBCV2



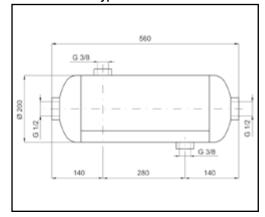

Réservoirs 4 connexions

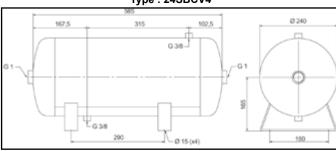
Type: 1SBCV4

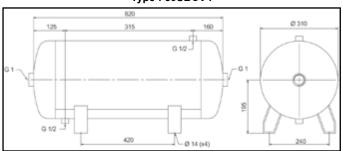

Type: 2SBCV4 177

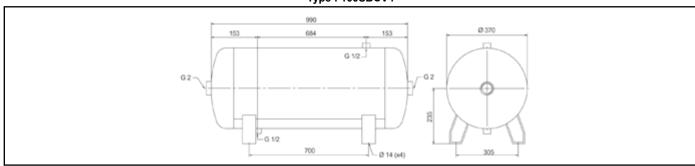

Type: 5SBCV4

Type: 7SBCV4


Type: 10SBCV4


Type: 12SBCV4


Type: 15SBCV4


Type: 24SBCV4

Type: 50SBCV4

Type: 100SBCV4

Réservoirs à air comprimé

Nos réservoirs sont équipés de soupape de sécurité et de manomètres de série.

Sur demande sont disponibles des jeux bouchons et raccords.

24/3000

Références	Code	Litres	Bar	psi	Ø cm	H cm	Kg
805.AHR.AM001	AM 001	24	11	159	24	67	13
805.AHR.AM002	AM 002	50	11	159	30	98	18
805.AHR.AM003	AM 003	100	11	159	37	115,5	28
805.AHR.AM004	AM 004	200	11	159	44	152	51
805.AHR.AM005	AM 005	270	11	159	49	166	63,5
805.AHR.AM006	AM 006	500	11	159	60	206	125
805.AHR.AM007	AM 007	720	11	159	80	200	195
805.AHR.AM012	AM 012	900	11	159	80	208	220
805.AHR.AM008	AM 008	1.000	12	174	80	225	235
805.AHR.AM009	AM 009	2.000	12	174	110	250	330
805.AHR. AM010	AM 010	3.000	12	174	120	330	560

Note: modèles horizontaux disponibles sur demande

Séparation EAU-HUILE

Références	Code	Litres	CFM	IN	OUT	Kg
70.ECOTRON 50	AM 110	5.000	176	1/2	1/2	9
70.ECOTRON 90	AM 120	9.000	318	1/2+1/2	1/2	18

Réseau d'air en tube aluminium

Contactez-nous pour une étude complète et gratuite suivant la configuration de votre bâtiment

SPECIAL AGRO ALIMENTAIRE

Tuyau PVC / Tube PRS/ Tube PTFE

Vérin fonds acétale corps alu ou inox

Raccords et vannes

Mano sur séparateur Vérin fond acétale corps inox

Désigna	ation	G1/4	G3/8	G1/2	G3/4
Assembla	ge KAU	11307	4868	5209	27094
Air non lux	k KBUI	13610	2710	27425	11252
Vanne ma	nuelle V3	10003	2927	10007	27548
Filtre	F	F14	2850	F12	3182
Régulateu	ır R	2763	9638	2211	R34
Mano		4010-f	4010-f	4010-f	4010-f
Filtre régu	lateur	2759	2760	2761	3181
Vanne SV	M VAU	10004	3305	5203	29659
Pression F	Prog MPP	10005	3306	10008	7831
Lubrificate	eur LUBVL	29650	29655	10070	29656
FR+L	VL	42605	4783	6280	7187

Siège social / Agence de Châteaubourg Z.I. du plessis Beucher 35220 CHATEAUBOURG

Tél: 02 99 00 84 00 - Fax: 02 99 00 84 09

Service constructeurs

Tél: 02 40 96 00 43 - Fax: 02 40 98 89 80

@mail : **contact@socah-hydraulique.fr** www.socah-hydraulique.fr

